Browse Source

Improved speed simulation

master
Youen Toupin 2 years ago
parent
commit
b811e128cd
  1. 38
      simulator/src/simulator-ui.ts
  2. 22
      simulator/src/simulator.html
  3. 101
      simulator/src/simulator.ts

38
simulator/src/simulator-ui.ts

@ -1,15 +1,16 @@
interface SimulationParameters {
batteryCapacity: number,
emptyVehicleWeight: number,
driverWeight: number,
additionalWeight: number,
humanPower: number,
averageSpeed: number,
climateZone: string,
dailyDistance: number,
dailyAscendingElevation: number
batteryCapacity: number;
emptyVehicleWeight: number;
driverWeight: number;
additionalWeight: number;
humanPower: number;
speedLimit: number;
climateZone: string;
dailyDistance: number;
dailyAscendingElevation: number;
flatTerrainRatio: number;
}
function runSimulation(parameters: SimulationParameters): Simulator.SimulationResult {
@ -21,9 +22,9 @@ function runSimulation(parameters: SimulationParameters): Simulator.SimulationRe
vehicle.driverWeight= parameters.driverWeight;
vehicle.additionalWeight = parameters.additionalWeight;
vehicle.humanPower = parameters.humanPower;
vehicle.averageSpeed = parameters.averageSpeed;
vehicle.speedLimit = parameters.speedLimit;
let solarIrradiance: number[] = climateData[parameters.climateZone.toLowerCase()];
let planning = new Simulator.OutingPlanning(parameters.dailyDistance, parameters.dailyAscendingElevation);
let planning = new Simulator.OutingPlanning(parameters.dailyDistance, parameters.dailyAscendingElevation, parameters.flatTerrainRatio);
let simulationResult = Simulator.simulate(vehicle, solarIrradiance, planning);
//console.log(solarIrradiance);
@ -68,13 +69,15 @@ function initializeSimulator(container: HTMLElement) {
driverWeight: Number((<HTMLInputElement>container.querySelector('[name=driver-weight]')).value),
additionalWeight: Number((<HTMLInputElement>container.querySelector('[name=additional-weight]')).value),
humanPower: Number((<HTMLInputElement>container.querySelector('[name=human-power]')).value),
averageSpeed: Number((<HTMLInputElement>container.querySelector('[name=average-speed]')).value),
speedLimit: Number((<HTMLInputElement>container.querySelector('[name=speed-limit]')).value),
climateZone: (<HTMLSelectElement>container.querySelector('.zone-selector')).value,
dailyDistance: Number((<HTMLInputElement>container.querySelector('[name=daily-distance]')).value),
dailyAscendingElevation: Number((<HTMLInputElement>container.querySelector('[name=daily-elevation]')).value),
flatTerrainRatio: Number((<HTMLInputElement>container.querySelector('[name=flat-ratio]')).value) / 100.0,
};
let simulationResult = runSimulation(parameters);
console.log(simulationResult);
let resultsContainer = container.querySelector('.simulation-results');
@ -82,10 +85,17 @@ function initializeSimulator(container: HTMLElement) {
let totalConsumedGridPower = simulationResult.cumulatedGridRechargeEnergy / simulationResult.vehicle.batteryEfficiency / simulationResult.vehicle.gridTransformerEfficiency;
let solarRechargeRatio = Math.round(100*(simulationResult.cumulatedSolarRechargeEnergy/(simulationResult.cumulatedSolarRechargeEnergy + simulationResult.cumulatedGridRechargeEnergy)));
let dailyDuration = parameters.dailyDistance / simulationResult.averageSpeed;
let dailyDurationHours = Math.floor(dailyDuration);
let dailyDurationMinutes = Math.round((dailyDuration - dailyDurationHours) * 60);
resultsContainer.querySelector('.result-info').innerHTML = `
<p>Il faudra recharger le vhélio sur secteur environ ${simulationResult.gridChargeCount} fois sur l'année.</p>
<p>Cela coûtera ${Math.round(totalConsumedGridPower/1000*averageKwhCost*100)/100} sur l'année.</p>
<p>Le vhélio sera rechargé à ${solarRechargeRatio}% par le soleil, ${100-solarRechargeRatio}% sur secteur.</p>
<p>Cela coûtera ${Math.round(totalConsumedGridPower/1000*averageKwhCost*100)/100} sur l'année. Le vhélio sera rechargé à ${solarRechargeRatio}% par le soleil, ${100-solarRechargeRatio}% sur secteur.</p>
<p><br/></p>
<p>Vitesse moyenne : ${Math.round(simulationResult.averageSpeed*10.0)/10.0} km/h (${Math.round(simulationResult.flatTerrainSpeed*10.0)/10.0} km/h sur plat, ${Math.round(simulationResult.uphillSpeed*10.0)/10.0} km/h en côte, ${Math.round(simulationResult.downhillSpeed*10.0)/10.0} km/h en descente)</p>
<p>Durée du trajet quotidien : ${dailyDurationHours}h ${dailyDurationMinutes}min. Distance annuelle : ${Math.round(simulationResult.cumulatedDistance)} km.</p>
`;
//<p>${Math.round(100*(simulationResult.cumulatedSolarRechargeEnergy/simulationResult.vehicle.batteryEfficiency) / simulationResult.totalProducedSolarEnergy)}% de l'énergie produite par le panneau photovoltaïque sera utilisée pour recharger le vhélio.</p>

22
simulator/src/simulator.html

@ -31,7 +31,7 @@
<div class="field-body">
<div class="field has-addons">
<p class="control is-expanded">
<input name="additional-weight" class="input" type="number" min="1" value="70"/>
<input name="additional-weight" class="input" type="number" min="1" value="50"/>
</p>
<p class="control">
<a class="button is-static">kg</a>
@ -160,12 +160,12 @@
<div class="field is-horizontal">
<div class="field-label is-normal">
<label class="label">Vitesse moyenne (hors arrêts)</label>
<label class="label">Contrainte vitesse (circulation, etc.)</label>
</div>
<div class="field-body">
<div class="field has-addons">
<p class="control is-expanded">
<input name="average-speed" class="input" type="number" min="1" value="20"/>
<input name="speed-limit" class="input" type="number" min="1" value="30"/>
</p>
<p class="control">
<a class="button is-static">km/h</a>
@ -173,6 +173,22 @@
</div>
</div>
</div>
<div class="field is-horizontal">
<div class="field-label is-normal">
<label class="label">Ratio de terrain plat</label>
</div>
<div class="field-body">
<div class="field has-addons">
<p class="control is-expanded">
<input name="flat-ratio" class="input" type="number" min="0" max="100" value="75"/>
</p>
<p class="control">
<a class="button is-static">%</a>
</p>
</div>
</div>
</div>
</div>
</div>
</div>

101
simulator/src/simulator.ts

@ -1,4 +1,10 @@
namespace Simulator {
interface ConsumptionData {
motorEnergy: number;
humanEnergy: number;
averageSpeed: number;
}
export class Vehicle {
batteryCapacity: number;
batteryEfficiency: number = 0.9;
@ -12,12 +18,17 @@ namespace Simulator {
additionalWeight: number = 0; // additional weight, not counting cyclist and empty vehicle weight, in kg
humanPower: number = 100; // W
averageSpeed: number = 20; // average speed in km/h, when the vehicle is moving (this is important, because driver does not provide power when stopped)
speedLimit: number = 20; // average speed in km/h, when the vehicle is moving (this is important, because driver does not provide power when stopped)
nominalMotorPower: number = 250; // W
assistanceSpeedLimit: number = 25; // km/h
motorConsumption(distance: number, ascendingElevation: number): number {
consumption(distance: number, ascendingElevation: number, inOutConsumption: ConsumptionData) {
if(distance <= 0)
{
return;
}
const g = 9.8;
let totalWeight = this.emptyVehicleWeight + this.driverWeight + this.additionalWeight;
let potentialEnergy = totalWeight * g * ascendingElevation; // Ep = m*g*h (result in Joules)
@ -25,32 +36,35 @@ namespace Simulator {
// empirical measures
let baseConsumption = 13; // in Wh/km, when human power is 0
let maxWeight = 300; // in kg
let additionalConsumptionAtMaxWeight = 5; // in Wh/km (without accounting for ascending elevation, only accelerations and additional friction)
let additionalConsumptionPerKg = 0.01; // in Wh/km per kg of total vehicle weight (additional losses due to increased friction, mostly independent of speed)
let weightRelatedConsumption = MathUtils.clamp(totalWeight * additionalConsumptionAtMaxWeight / maxWeight, 0, additionalConsumptionAtMaxWeight);
let requiredEnergy = Math.max(0, distance * (baseConsumption + totalWeight * additionalConsumptionPerKg) + potentialEnergy);
let motorPowerLimit = this.nominalMotorPower;
let tripDuration = (distance * (baseConsumption + weightRelatedConsumption) + potentialEnergy) / (motorPowerLimit + this.humanPower);
let tripDuration = Math.max(0.0001, requiredEnergy / (motorPowerLimit + this.humanPower));
let actualSpeed = distance / tripDuration;
console.log("Max vehicle speed, according to available power: " + (Math.round(actualSpeed*10)/10) + " km/h")
//console.log("Max vehicle speed, according to available power: " + (Math.round(actualSpeed*10)/10) + " km/h")
if(actualSpeed > this.assistanceSpeedLimit) {
tripDuration = distance / this.assistanceSpeedLimit
motorPowerLimit = Math.max(0, ((distance * (baseConsumption + weightRelatedConsumption) + potentialEnergy) - tripDuration * this.humanPower) / tripDuration);
tripDuration = (distance * (baseConsumption + weightRelatedConsumption) + potentialEnergy) / (motorPowerLimit + this.humanPower);
let assistTripDuration = distance / this.assistanceSpeedLimit
motorPowerLimit = Math.max(0, requiredEnergy/assistTripDuration - this.humanPower);
if(motorPowerLimit + this.humanPower > 0)
tripDuration = requiredEnergy / (motorPowerLimit + this.humanPower);
actualSpeed = distance / tripDuration;
console.log("Vehicle speed clamped by assistance speed limit, motor power limited to: " + Math.round(motorPowerLimit) + " W")
//console.log("Vehicle speed accounting for assistance speed limit: " + (Math.round(actualSpeed*10)/10) + " km/h (motor power limited to: " + Math.round(motorPowerLimit) + " W)")
}
if(actualSpeed > this.averageSpeed) {
actualSpeed = this.averageSpeed;
if(actualSpeed > this.speedLimit) {
actualSpeed = this.speedLimit;
tripDuration = distance / actualSpeed;
motorPowerLimit = Math.max(0, requiredEnergy/tripDuration - this.humanPower);
}
let humanEnergy = tripDuration * this.humanPower;
let humanEnergy = Math.max(requiredEnergy, tripDuration * this.humanPower);
return Math.max(motorPowerLimit * tripDuration, distance * (baseConsumption + weightRelatedConsumption) + potentialEnergy - humanEnergy);
inOutConsumption.motorEnergy += Math.max(motorPowerLimit * tripDuration, requiredEnergy - humanEnergy);
inOutConsumption.humanEnergy += humanEnergy;
inOutConsumption.averageSpeed += actualSpeed;
}
solarPower(irradiance: number): number {
@ -66,7 +80,7 @@ namespace Simulator {
}
export class OutingPlanning {
constructor(public dailyDistance: number, public dailyAscendingElevation: number) {
constructor(public dailyDistance: number, public dailyAscendingElevation: number, public flatTerrainRatio: number) {
}
getOuting(dayOfWeek: number, hourOfDay: number, outing: Outing) {
@ -95,6 +109,14 @@ namespace Simulator {
cumulatedSolarRechargeEnergy: number; // Cumulated energy added to the battery from the solar panel, in Wh of battery charge (actual generated power is slightly higher due to losses)
totalProducedSolarEnergy: number; // Cumulated energy produced (used or unused), before accounting for the battery recharge efficiency.
cumulatedMotorConsumption: number; // Cumulated energy consumed by the motor, in Wh. In this simulation, this is equal to the energy drawn from the battery.
cumulatedHumanEnergy: number;
cumulatedDistance: number;
flatTerrainSpeed: number;
uphillSpeed: number;
downhillSpeed: number;
averageSpeed: number;
}
export function simulate(vehicle: Vehicle, solarIrradiance: number[], planning: OutingPlanning): SimulationResult {
@ -106,12 +128,45 @@ namespace Simulator {
cumulatedGridRechargeEnergy: 0,
cumulatedSolarRechargeEnergy: 0,
totalProducedSolarEnergy: 0,
cumulatedMotorConsumption: 0
cumulatedMotorConsumption: 0,
cumulatedHumanEnergy: 0,
cumulatedDistance: 0,
flatTerrainSpeed: 0,
uphillSpeed: 0,
downhillSpeed: 0,
averageSpeed: 0
};
let remainingBatteryCharge = vehicle.batteryCapacity;
let outing: Outing = { distance: 0, ascendingElevation: 0 };
let consumption: ConsumptionData = { motorEnergy: 0, humanEnergy: 0, averageSpeed: 0 };
let flatTerrainRatio = MathUtils.clamp(planning.flatTerrainRatio, 0.0, 1.0);
if(planning.dailyAscendingElevation <= 0) flatTerrainRatio = 1.0;
let flatDistance = planning.dailyDistance * flatTerrainRatio;
consumption = { motorEnergy: 0, humanEnergy: 0, averageSpeed: 0 };
vehicle.consumption(flatDistance, 0, consumption);
result.flatTerrainSpeed = consumption.averageSpeed;
let uphillDistance = planning.dailyDistance * (1.0 - flatTerrainRatio) * 0.5;
consumption = { motorEnergy: 0, humanEnergy: 0, averageSpeed: 0 };
vehicle.consumption(uphillDistance, planning.dailyAscendingElevation, consumption);
result.uphillSpeed = consumption.averageSpeed;
let downhillDistance = planning.dailyDistance * (1.0 - flatTerrainRatio) * 0.5;
consumption = { motorEnergy: 0, humanEnergy: 0, averageSpeed: 0 };
vehicle.consumption(downhillDistance, -planning.dailyAscendingElevation, consumption);
result.downhillSpeed = consumption.averageSpeed;
let dailyTripDuration =
(flatDistance > 0 ? flatDistance / result.flatTerrainSpeed : 0)
+ (uphillDistance > 0 ? uphillDistance / result.uphillSpeed : 0)
+ (downhillDistance > 0 ? downhillDistance / result.downhillSpeed : 0);
result.averageSpeed = planning.dailyDistance / dailyTripDuration;
for(let day = 0; day < 365; ++day) {
for(let hour = 0; hour < 24; ++hour) {
@ -119,14 +174,20 @@ namespace Simulator {
planning.getOuting(day % 7, hour, outing);
let consumption = outing.distance > 0 ? vehicle.motorConsumption(outing.distance, outing.ascendingElevation) : 0;
consumption.motorEnergy = 0; consumption.humanEnergy = 0; consumption.averageSpeed = 0;
vehicle.consumption(outing.distance * flatTerrainRatio, 0, consumption);
vehicle.consumption(outing.distance * (1.0 - flatTerrainRatio) * 0.5, outing.ascendingElevation, consumption);
vehicle.consumption(outing.distance * (1.0 - flatTerrainRatio) * 0.5, -outing.ascendingElevation, consumption);
result.cumulatedDistance += outing.distance;
let production = vehicle.solarPower(solarIrradiance[hourIdx]) * 1.0; // produced energy in Wh is equal to power (W) multiplied by time (h)
result.totalProducedSolarEnergy += production;
let solarCharge = production * vehicle.batteryEfficiency;
// TODO: we should keep a margin because real users will recharge before they reach the bare minimum required for an outing
remainingBatteryCharge += solarCharge - consumption;
remainingBatteryCharge += solarCharge - consumption.motorEnergy;
let fullGridRecharge = false;
if(remainingBatteryCharge > vehicle.batteryCapacity) {
@ -142,7 +203,7 @@ namespace Simulator {
result.gridChargeCount += 1;
}
result.cumulatedMotorConsumption += consumption;
result.cumulatedMotorConsumption += consumption.motorEnergy;
result.cumulatedSolarRechargeEnergy += solarCharge;
result.batteryLevel[hourIdx] = fullGridRecharge ? 0 : remainingBatteryCharge;

Loading…
Cancel
Save