188 lines
5.0 KiB
C++
188 lines
5.0 KiB
C++
/* Ian Fleet 2018
|
|
|
|
All files, software, schematics and designs are provided as-is with no warranty.
|
|
All files, software, schematics and designs are for experimental/hobby use.
|
|
Under no circumstances should any part be used for critical systems where safety,
|
|
life or property depends upon it. You are responsible for all use.
|
|
You are free to use, modify, derive or otherwise extend for your own purposes
|
|
|
|
*/
|
|
|
|
|
|
// This example emulates a DS2413 device on an Arduino UNO or ATTINY85
|
|
// note : physical DS2413 devices found in 2018 are often clones with
|
|
// a device code different to the Maxim datasheet
|
|
|
|
#include "Arduino.h"
|
|
#include "OneWireSlave.h"
|
|
#include "comptime.h"
|
|
|
|
// This is the pin that will be used for one-wire data
|
|
// On Arduino Uno, you can use pin 2 or pin 3
|
|
|
|
Pin oneWireData(2); // PB2 only attiny85 pin with rising/falling interrupts
|
|
|
|
//Pin led(0);
|
|
|
|
|
|
// This sample emulates a DS2413 device , so we start by defining the available commands
|
|
|
|
const byte DS2413_FAMILY_ID = 0x3A; // Maxim DS2413 device code
|
|
const byte CLONE_FAMILY_ID = 0x85; // clone device code
|
|
const byte DS2413_ACCESS_READ = 0xF5;
|
|
const byte DS2413_ACCESS_WRITE = 0x5A;
|
|
const byte DS2413_ACK_SUCCESS = 0xAA;
|
|
|
|
// generate unique id
|
|
const byte owROM[7] = { DS2413_FAMILY_ID, SERIAL_NUMBER};
|
|
// will be calculated in begin:---------------^^^^
|
|
|
|
// or use fixed id - make sure it doesn't conflict with another device
|
|
//const byte owROM[7] = { 0x3A, 0x00, 0x55, 0xAA, 0x00, 0x11, 0x22 };
|
|
|
|
|
|
#define PIOA 3 // (pin 3)
|
|
#define PIOB 4 // (pin 4)
|
|
|
|
uint8_t latch = 0;
|
|
uint8_t statusbyte1 = 0;
|
|
uint8_t statusbyte2 = 0;
|
|
|
|
enum DeviceState
|
|
{
|
|
DS_WaitingReset,
|
|
DS_WaitingCommand,
|
|
DS_WaitingStatus1,
|
|
DS_WaitingStatus2,
|
|
};
|
|
volatile DeviceState state = DS_WaitingReset;
|
|
|
|
// scratchpad
|
|
volatile byte scratchpad[2];
|
|
volatile byte response[2];
|
|
|
|
|
|
// This function will be called each time the OneWire library has an event to notify (reset, error, byte received)
|
|
void owReceive(OneWireSlave::ReceiveEvent evt, byte data);
|
|
|
|
//////////////////////////////////////////
|
|
|
|
void setup()
|
|
{
|
|
// led.outputMode();
|
|
// led.writeLow();
|
|
// OSCCAL = 85;
|
|
// Setup the OneWire library
|
|
OWSlave.setReceiveCallback(&owReceive);
|
|
OWSlave.begin(owROM, oneWireData.getPinNumber());
|
|
}
|
|
|
|
//////////////////////////////////////////
|
|
|
|
void loop()
|
|
{
|
|
delay(10);
|
|
|
|
cli();//disable interrupts
|
|
// Be sure to not block interrupts for too long, OneWire timing is very tight for some operations. 1 or 2 microseconds (yes, microseconds, not milliseconds) can be too much depending on your master controller, but then it's equally unlikely that you block exactly at the moment where it matters.
|
|
// This can be mitigated by using error checking and retry in your high-level communication protocol. A good thing to do anyway.
|
|
|
|
sei();//enable interrupts
|
|
|
|
}
|
|
|
|
//////////////////////////////////////////
|
|
|
|
static uint8_t getstatus() {
|
|
uint8_t c = 0;
|
|
if (latch & 0x01) c |= 0x02;
|
|
if (digitalRead(PIOA)) c |= 0x01;
|
|
if (latch & 0x02) c |= 0x08;
|
|
if (digitalRead(PIOB)) c |= 0x04;
|
|
uint8_t x = (~c) << 4;
|
|
return x + c;
|
|
}
|
|
|
|
//////////////////////////////////////////
|
|
|
|
static void port(int PIO, bool stat) {
|
|
if (stat) {
|
|
digitalWrite(PIO, HIGH);
|
|
pinMode(PIO, INPUT);
|
|
} else {
|
|
pinMode(PIO, OUTPUT);
|
|
digitalWrite(PIO, LOW);
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////
|
|
|
|
static void set(uint8_t val) {
|
|
latch = val;
|
|
port(PIOA, latch & 1);
|
|
port(PIOB, latch & 2);
|
|
//TODO copy latch to EEPROM
|
|
}
|
|
|
|
//////////////////////////////////////////
|
|
|
|
void owReceive(OneWireSlave::ReceiveEvent evt, byte data)
|
|
{
|
|
switch (evt)
|
|
{
|
|
case OneWireSlave::RE_Byte:
|
|
switch (state)
|
|
{
|
|
case DS_WaitingCommand:
|
|
switch (data)
|
|
{
|
|
case DS2413_ACCESS_WRITE:
|
|
state = DS_WaitingStatus1;
|
|
break;
|
|
|
|
case DS2413_ACCESS_READ:
|
|
state = DS_WaitingReset;
|
|
scratchpad[0] = getstatus();
|
|
OWSlave.beginWrite((const byte*)scratchpad, 1, 0);
|
|
|
|
break;
|
|
|
|
//case :
|
|
|
|
// break;
|
|
}
|
|
break;
|
|
|
|
|
|
case DS_WaitingStatus1:
|
|
statusbyte1 = data;
|
|
state = DS_WaitingStatus2;
|
|
break;
|
|
|
|
case DS_WaitingStatus2:
|
|
statusbyte2 = data;
|
|
if (statusbyte1 != ~statusbyte2) {
|
|
set(statusbyte1);
|
|
response[0] = DS2413_ACK_SUCCESS;
|
|
} else {
|
|
response[0] = 0x11; // mark error - real DS2413 does not do this
|
|
}
|
|
response[1] = getstatus();
|
|
OWSlave.beginWrite((const byte*)response, 2, 0);
|
|
state = DS_WaitingCommand;
|
|
break;
|
|
|
|
}
|
|
break;
|
|
|
|
case OneWireSlave::RE_Reset:
|
|
state = DS_WaitingCommand;
|
|
break;
|
|
|
|
case OneWireSlave::RE_Error:
|
|
state = DS_WaitingReset;
|
|
break;
|
|
}
|
|
}
|