A Kerbal Space Program mod that adds balloon parts to create aerostats
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

303 lines
14 KiB

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using UnityEngine;
namespace Aerostats
{
public class ModuleAerostat : PartModule
{
// In this class, amount of gas Q is specified in m^3 at stp (standard pressure of 100kPa and temperature of 0°C = 273K). Ideal gas equation P.V = n.R.T gives us the equivalent number of moles: n = P.V/R/T = 100000.Q/8.314/273 = 44.Q mol
private static readonly float R = 8.314f;
private static readonly float ZeroCelsius = 273.15f;
private static readonly float StandardPressure = 100000.0f;
private static readonly float StpVolumeToMoles = 100000.0f / R / 273.15f;
/// <summary>
/// Maximum rate at which gas can be injected in the balloon to fill it, in m^3/s at stp
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float MaxGasFillRate = 100;
/// <summary>
/// Maximum rate at which gas can be removed from the balloon to deflate it, in m^3/s at stp
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float MaxGasVentRate = 500;
/// <summary>
/// Volume at which the balloon is full. Trying to add more gas, or simply having already stored gas expand due to lower exterior pressure or increased temperature, will cause gas to be vented through the security valve.
/// Air density at sea level is about 1.2kg/m^3, which means a 1000m^3 balloon will be able to lift about 1 ton at sea level (after substracting the balloon gas weight)
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float MaxBalloonVolume = 15000;
/// <summary>
/// Weight, in kilograms, of 1m^3 of gas at 100kPa and 0°C
/// Helium is 179g/m^3
/// Hydrogen is 90g/m^3
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float GasDensity = 0.179f;
/// <summary>
/// Quantity of gas that the system is trying to get inside the balloon, in m^3 at 100kPa and 0°C. If the balloon contains more gas, some will be vented, otherwise, gas will be injected.
/// If the balloon can not store the target amount of gas (because the maximum volume has been reached), the system won't try to inject more gas, to avoid venting through the security valve of the balloon.
/// </summary>
[KSPField(isPersistant = true, guiActive = true)]
[UI_FloatRange(minValue = 0, maxValue = 20000.0f, stepIncrement = 100.0f)]
public float LiftingGasTargetQuantity = 100.0f;
/// <summary>
/// Mass of the empty balloon, in kg
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float BalloonEmptyMass = 50.0f;
/// <summary>
/// Minimum amount of gas that will be used to inflate the balloon at the beginning. The balloon can not be deflated below this amount.
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float MinimumFillQuantity = 10.0f;
/// <summary>
/// Drag coefficient of the balloon
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float BalloonDragCoeff = 0.3f;
/// <summary>
/// Length of spring that can not be extended (no force applied under this length)
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float SpringRestLength = 10.0f;
/// <summary>
/// Force applied by the spring between the balloon and the vessel, proportional to spring extension, in newton per meter
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float SpringHardness = 5000.0f;
[KSPField(isPersistant = false, guiActive = true)]
public string Status;
private bool Deployed;
private bool Destroyed;
/// <summary>
/// Gas quantity currently inside the balloon
/// </summary>
[KSPField(guiName = "Gas quantity", isPersistant = true, guiActive = true)]
public float LiftingGasQuantity;
[KSPField(guiName = "Volume", isPersistant = false, guiActive = true)]
public string VolumeStatus;
/// <summary>
/// Inflation ratio of the balloon (0=empty, 1=maximum)
/// </summary>
private float Inflation = 0;
private float Radius = 0.01f;
private GameObject Balloon;
private LineRenderer Spring;
private Vector3 EstimatedNextFramePosition;
[KSPEvent(guiActive = true, active = true, externalToEVAOnly = false, guiActiveUnfocused = true, guiName = "Deploy balloon", unfocusedRange = 5)]
public void Deploy()
{
if (Destroyed || Deployed)
return;
Deployed = true;
UnityEngine.Debug.Log("Aerostats: staged");
Util.PostScreenMessage("staged");
Balloon = GameObject.CreatePrimitive(PrimitiveType.Sphere);
Balloon.transform.position = part.Rigidbody.position + part.Rigidbody.transform.up;
Balloon.AddComponent<Rigidbody>();
Balloon.rigidbody.mass = BalloonEmptyMass;
Balloon.rigidbody.velocity = part.rigidbody.velocity; // start with the same velocity or everything explodes when deploying from a moving vessel
Balloon.rigidbody.angularDrag = 10.0f;
LiftingGasQuantity = part.RequestResource("Helium", MinimumFillQuantity);
Spring = Balloon.AddComponent<LineRenderer>();
Spring.useWorldSpace = true;
Spring.material = new Material(Shader.Find("VertexLit"));
Spring.SetColors(Color.black, Color.black);
Spring.SetWidth(0.1f, 0.1f);
Spring.SetVertexCount(2);
part.OnJustAboutToBeDestroyed += OnPartDestroyed;
EstimatedNextFramePosition = part.Rigidbody.position;
}
[KSPEvent(guiActive = true, active = true, externalToEVAOnly = false, guiActiveUnfocused = true, guiName = "Cut rope", unfocusedRange = 5)]
public void Cut()
{
if (Destroyed || !Deployed)
return;
Destroy(Balloon); // another option could be to let it float freely, but in this case the buoyancy code should be implemented in a separate MonoBehavior
Balloon = null;
Spring = null;
part.OnJustAboutToBeDestroyed -= OnPartDestroyed;
Destroyed = true;
}
public override void OnStart(PartModule.StartState state)
{
if (!HighLogic.LoadedSceneIsEditor && !HighLogic.LoadedSceneIsFlight) { return; }
Util.PostScreenMessage("Aerostat loaded");
part.stagingIcon = "PARACHUTES";
}
private void OnPartDestroyed()
{
Cut();
}
private void FixedUpdate()
{
if (Destroyed)
{
Status = "separated";
VolumeStatus = "-";
return;
}
if (GameSettings.LAUNCH_STAGES.GetKeyDown() && vessel.isActiveVessel && (part.inverseStage == Staging.CurrentStage - 1 || Staging.CurrentStage == 0))
{
Deploy();
}
if (Deployed)
{
// detect Krakensbane teleportation, and fix up the balloon position (otherwise it results in instant ship disintegration due to extreme forces on the spring)
if ((part.Rigidbody.position - EstimatedNextFramePosition).magnitude > 1000.0f)
{
Util.PostScreenMessage("Krakensbane teleportation detected! (dist=" + (part.Rigidbody.position - EstimatedNextFramePosition).magnitude+")");
var offset = part.rigidbody.position - EstimatedNextFramePosition;
Balloon.rigidbody.position += offset;
Balloon.transform.position = Balloon.rigidbody.position;
}
EstimatedNextFramePosition = part.rigidbody.position + part.rigidbody.velocity * Time.fixedDeltaTime;
float externalTemperature = (float)FlightGlobals.getExternalTemperature();
float balloonInternalTemperature = externalTemperature;
float externalPressure = Math.Max((float)FlightGlobals.getStaticPressure() * 1000.0f, 0.00001f);
Util.PostSingleScreenMessage("external atmo", "Temperature = " + externalTemperature + "K, Pressure=" + externalPressure + "Pa");
float currentMaxQuantity = MaxBalloonVolume / R / balloonInternalTemperature * externalPressure / StpVolumeToMoles;
LiftingGasTargetQuantity = Math.Max(MinimumFillQuantity, LiftingGasTargetQuantity);
if(LiftingGasTargetQuantity > LiftingGasQuantity)
{
// infalting balloon
float stepFinalQuantity = Math.Min(LiftingGasQuantity + MaxGasFillRate * Time.fixedDeltaTime, Math.Min(LiftingGasTargetQuantity, currentMaxQuantity));
float step = Math.Max(stepFinalQuantity - LiftingGasQuantity, 0.0f);
float stepResource = part.RequestResource("Helium", step);
LiftingGasQuantity += stepResource;
if(step > 0.0f)
{
Status = stepResource > 0.0f ? "inflating" : "out-of-gas";
}
else
{
Status = "nominal";
}
}
else
{
// deflating balloon
Status = LiftingGasTargetQuantity == LiftingGasQuantity ? "nominal" : "deflating";
LiftingGasQuantity = Math.Max(LiftingGasQuantity - MaxGasVentRate * Time.fixedDeltaTime, LiftingGasTargetQuantity);
}
// balloon security valve
if (LiftingGasQuantity > currentMaxQuantity)
{
Status = "full (venting)";
Util.PostSingleScreenMessage("security valve", "Some gas has been vented by the balloon security valve");
LiftingGasQuantity = currentMaxQuantity;
}
float currentGasMoles = StpVolumeToMoles * LiftingGasQuantity;
float currentGasVolume = currentGasMoles * R * balloonInternalTemperature / externalPressure;
Inflation = currentGasVolume / MaxBalloonVolume;
VolumeStatus = Mathf.Round(currentGasVolume) + " / " + Mathf.Round(MaxBalloonVolume);
Util.PostSingleScreenMessage("inflation", "Inflation = " + (Inflation * 100.0f).ToString("0.00") + "%");
float airDensity = (float)FlightGlobals.getAtmDensity(externalPressure / 1000.0f, externalTemperature, vessel.mainBody);
float currentGasDensity = GasDensity * balloonInternalTemperature / ZeroCelsius / externalPressure * StandardPressure;
float balloonLift = currentGasVolume * airDensity;
float balloonGasMass = currentGasDensity * currentGasVolume;
Util.PostSingleScreenMessage("lift", "Air density = " + airDensity + "kg/m^3, Lift = " + (balloonLift - balloonGasMass) + "kg");
var gravityAccel = FlightGlobals.getGeeForceAtPosition(vessel.GetWorldPos3D());
//Util.PostSingleScreenMessage("gravity", "Gravity accel = (" + gravityAccel.x + ", " + gravityAccel.y + ", " + gravityAccel.z + ")");
// V = 4/3*pi*r^3
Radius = Mathf.Pow(currentGasVolume * 0.75f / Mathf.PI, 0.333f);
float scale = Radius * 2.0f + 0.1f;
Balloon.transform.localScale = new Vector3(scale,scale,scale);
Balloon.rigidbody.mass = (BalloonEmptyMass + balloonGasMass) * 0.001f;
Balloon.rigidbody.AddForce(-gravityAccel * balloonLift / 1000.0f, ForceMode.Force);
// balloon drag
var airVelocity = Balloon.rigidbody.velocity + Krakensbane.GetFrameVelocity() /*- vessel.mainBody.getRFrmVel(vessel.GetWorldPos3D())*/;
float sqVel = (float)airVelocity.magnitude;
sqVel *= sqVel;
float dragForce = 0.5f * airDensity * sqVel * BalloonDragCoeff * (Mathf.PI * Radius * Radius);
Util.PostSingleScreenMessage("balloon drag", "Drag = " + dragForce + "N");
Balloon.rigidbody.AddForce(-airVelocity.normalized * dragForce / 1000.0f, ForceMode.Force);
// spring between balloon and base
float restLength = SpringRestLength + Radius;
var springVec = Balloon.rigidbody.position - part.rigidbody.position;
float springLength = springVec.magnitude;
float springForceMag = 0;
var balloonAttachPoint = Balloon.rigidbody.position - Balloon.transform.up.normalized * Radius;
if(springLength > restLength)
{
float tensingLength = springLength - restLength;
springForceMag = tensingLength * SpringHardness;
var springForce = springVec * (springForceMag / springLength * 0.001f);
part.rigidbody.AddForce(springForce, ForceMode.Force);
Balloon.rigidbody.AddForceAtPosition(-springForce, balloonAttachPoint, ForceMode.Force);
}
Util.PostSingleScreenMessage("spring force", "Spring force = " + springForceMag + "N");
}
else
{
Status = "packed";
VolumeStatus = "-";
}
}
private void LateUpdate()
{
if (Destroyed)
return;
if (Deployed)
{
var balloonAttachPoint = Balloon.rigidbody.position - Balloon.transform.up.normalized * Radius;
Spring.SetPosition(0, part.transform.position);
Spring.SetPosition(1, balloonAttachPoint);
}
}
}
}