A Kerbal Space Program mod that adds balloon parts to create aerostats
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

185 lines
8.7 KiB

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using UnityEngine;
namespace Aerostats
{
public class ModuleAerostat : PartModule
{
[KSPField(isPersistant = false, guiActive = false)]
public string DeployAnimation = "semiDeploy";
[KSPField(isPersistant = false, guiActive = false)]
public string InflateAnimation = "fullyDeploy";
// In this class, amount of gas Q is specified in m^3 at stp (standard pressure of 100kPa and temperature of 0°C = 273K). Ideal gas equation P.V = n.R.T gives us the equivalent number of moles: n = P.V/R/T = 100000.Q/8.314/273 = 44.Q mol
private static readonly float R = 8.314f;
private static readonly float StpVolumeToMoles = 100000.0f / R / 273.15f;
/// <summary>
/// Maximum rate at which gas can be injected in the balloon to fill it, in m^3/s at stp
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float MaxGasFillRate = 100;
/// <summary>
/// Maximum rate at which gas can be removed from the balloon to deflate it, in m^3/s at stp
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float MaxGasVentRate = 500;
/// <summary>
/// Volume at which the balloon is full. Trying to add more gas, or simply having already stored gas expand due to lower exterior pressure or increased temperature, will cause gas to be vented through the security valve.
/// Air density at sea level is about 1.2kg/m^3, which means a 1000m^3 balloon will be able to lift about 1 ton at sea level (after substracting the balloon gas weight)
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float MaxBalloonVolume = 10000;
/// <summary>
/// Maximum initial reserve of compressed gas, in m^3 at stp
/// For helium, the volume needed to store this reserve is about 0.0014m^3 of compressed storage (liquid) for 1m^3 of gas at stp
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float CompressedGasStorage = 15000;
[KSPField(isPersistant = true, guiActive = true)]
public float RemainingCompressedGas = 15000;
/// <summary>
/// Weight, in kilograms, of 1m^3 of gas at 100kPa and 0°C
/// Helium is 179g/m^3
/// Hydrogen is 90g/m^3
/// </summary>
[KSPField(isPersistant = false, guiActive = false)]
public float GasDensity = 0.179f;
/// <summary>
/// Quantity of gas that the system is trying to get inside the balloon, in m^3 at 100kPa and 0°C. If the balloon contains more gas, some will be vented, otherwise, gas will be injected.
/// If the balloon can not store the target amount of gas (because the maximum volume has been reached), the system won't try to inject more gas, to avoid venting through the security valve of the balloon.
/// </summary>
[KSPField(isPersistant = true, guiActive = true)]
[UI_FloatRange(minValue = 0.0f, maxValue = 20000.0f, stepIncrement = 1.0f)]
public float LiftingGasTargetQuantity;
private bool Staged;
/// <summary>
/// Gas quantity currently inside the balloon
/// </summary>
[KSPField(isPersistant = true, guiActive = true)]
public float LiftingGasQuantity;
/// <summary>
/// Inflation ratio of the balloon (0=empty, 1=maximum)
/// </summary>
private float Inflation = 0;
private void PlayAnimation(string animationName, float animationSpeed)
{
foreach (Animation animation in part.FindModelAnimators(animationName))
{
AnimationState state = animation[animationName];
state.normalizedTime = 0;
state.normalizedSpeed = animationSpeed;
state.enabled = true;
animation.Play(animationName);
}
}
private bool IsAnimationPlaying(string animationName)
{
return part.FindModelAnimators(animationName).Any(a => a[animationName].enabled);
}
private void SetInflation(float ratio)
{
foreach (Animation animation in part.FindModelAnimators(InflateAnimation))
{
AnimationState state = animation[InflateAnimation];
state.normalizedTime = ratio;
state.normalizedSpeed = 0;
state.enabled = true;
animation.Play(InflateAnimation);
}
}
public override void OnStart(PartModule.StartState state)
{
if (!HighLogic.LoadedSceneIsEditor && !HighLogic.LoadedSceneIsFlight) { return; }
ScreenMessages.PostScreenMessage("Aerostat loaded");
part.stagingIcon = "PARACHUTES";
}
private void OnStaged()
{
UnityEngine.Debug.Log("Aerostats: staged");
ScreenMessages.PostScreenMessage("staged");
PlayAnimation(DeployAnimation, 1.0f);
}
private void FixedUpdate()
{
if (!Staged && part.inverseStage >= Staging.CurrentStage)
{
Staged = true;
OnStaged();
}
if (Staged)
{
if (!IsAnimationPlaying(DeployAnimation))
{
float externalTemperature = (float)FlightGlobals.getExternalTemperature();
float balloonInternalTemperature = externalTemperature;
float externalPressure = Math.Max((float)FlightGlobals.getStaticPressure() * 1000, 0.00001f);
Util.PostSingleScreenMessage("external atmo", "Temperature = " + externalTemperature + "K, Pressure=" + externalPressure + "Pa");
float currentMaxQuantity = MaxBalloonVolume / R / balloonInternalTemperature * externalPressure / StpVolumeToMoles;
if(LiftingGasTargetQuantity > LiftingGasQuantity)
{
float stepFinalQuantity = Math.Min(LiftingGasQuantity + MaxGasFillRate * Time.fixedDeltaTime, Math.Min(LiftingGasTargetQuantity, currentMaxQuantity));
float step = Math.Max(stepFinalQuantity - LiftingGasQuantity, 0.0f);
LiftingGasQuantity += step;
RemainingCompressedGas -= step;
if(RemainingCompressedGas < 0)
{
Util.PostSingleScreenMessage("out of gas", "Lifting gas reserve exhausted");
LiftingGasQuantity += RemainingCompressedGas;
RemainingCompressedGas = 0;
}
}
else
{
LiftingGasQuantity = Math.Max(LiftingGasQuantity - MaxGasVentRate * Time.fixedDeltaTime, LiftingGasTargetQuantity);
}
// balloon security valve
if (LiftingGasQuantity > currentMaxQuantity)
{
Util.PostSingleScreenMessage("security valve", "Some gas has been vented by the balloon security valve");
LiftingGasQuantity = currentMaxQuantity;
}
float currentGasMoles = StpVolumeToMoles * LiftingGasQuantity;
float currentGasVolume = currentGasMoles * R * balloonInternalTemperature / externalPressure;
Inflation = currentGasVolume / MaxBalloonVolume;
Util.PostSingleScreenMessage("inflation", "Inflation = " + (Inflation * 100.0f).ToString("0.00") + "%");
SetInflation(Inflation);
float airDensity = (float)FlightGlobals.getAtmDensity(externalPressure / 1000.0f, externalTemperature, vessel.mainBody);
float balloonLift = currentGasVolume * (airDensity - GasDensity);
Util.PostSingleScreenMessage("lift", "Air density = " + airDensity + "kg/m^3, Lift = " + balloonLift + "kg");
var gravityAccel = FlightGlobals.getGeeForceAtPosition(vessel.GetWorldPos3D());
//Util.PostSingleScreenMessage("gravity", "Gravity accel = (" + gravityAccel.x + ", " + gravityAccel.y + ", " + gravityAccel.z + ")");
part.Rigidbody.AddForce(-gravityAccel * balloonLift / 1000.0f, ForceMode.Force);
}
}
}
}
}