Compare commits

..

17 Commits

Author SHA1 Message Date
IanF
3359d0ef47 Upload files to '' 2018-12-11 03:31:46 +01:00
IanF
47ac8c0e91 Upload files to '' 2018-12-10 21:23:54 +01:00
IanF
bc5212e502 Upload files to '' 2018-12-10 13:02:47 +01:00
IanF
8633326518 Update 'README.md' 2018-12-10 10:36:51 +01:00
IanF
4aedff4fa8 Update 'README.md' 2018-12-10 10:00:18 +01:00
IanF
b21452d98d Update 'README.md' 2018-12-10 09:59:48 +01:00
IanF
d698f10a08 Upload files to ''
Added support for attiny85  at 16mhz.

Attiny85 fuses settings and OSCCAL calibration are required to meet the OneWire timing specifications
2018-12-10 09:52:46 +01:00
IanF
1a0eda0d59 Upload files to '' 2018-12-03 20:44:06 +01:00
Youen Toupin
54917a0b83 updated documentation to match latest version of code 2018-04-01 12:05:52 +02:00
Youen Toupin
b61587aa7b re-arranged folders to follow Arduino IDE 1.5 specifications 2018-04-01 11:49:34 +02:00
Youen Toupin
0867eccc3a fixed vscode intellisens 2018-04-01 11:37:12 +02:00
Youen Toupin
33215645db added vscode configuration 2018-04-01 11:13:02 +02:00
Youen Toupin
b1fbe102c9 removed visual studio integration 2018-04-01 11:12:05 +02:00
Youen Toupin
efdcb0d2ba documentation improvements 2018-04-01 11:10:22 +02:00
Youen Toupin
42711b30d6 renamed DS18B20 sample 2018-04-01 11:08:06 +02:00
Youen Toupin
89732cfc6a Merge remote-tracking branch 'ntruchsess/library' 2018-04-01 11:04:53 +02:00
ntruchsess
5b3c090601 rearange as arduino-lib 2016-03-18 13:05:43 +01:00
24 changed files with 2609 additions and 1801 deletions

63
.gitattributes vendored
View File

@ -1,63 +0,0 @@
###############################################################################
# Set default behavior to automatically normalize line endings.
###############################################################################
* text=auto
###############################################################################
# Set default behavior for command prompt diff.
#
# This is need for earlier builds of msysgit that does not have it on by
# default for csharp files.
# Note: This is only used by command line
###############################################################################
#*.cs diff=csharp
###############################################################################
# Set the merge driver for project and solution files
#
# Merging from the command prompt will add diff markers to the files if there
# are conflicts (Merging from VS is not affected by the settings below, in VS
# the diff markers are never inserted). Diff markers may cause the following
# file extensions to fail to load in VS. An alternative would be to treat
# these files as binary and thus will always conflict and require user
# intervention with every merge. To do so, just uncomment the entries below
###############################################################################
#*.sln merge=binary
#*.csproj merge=binary
#*.vbproj merge=binary
#*.vcxproj merge=binary
#*.vcproj merge=binary
#*.dbproj merge=binary
#*.fsproj merge=binary
#*.lsproj merge=binary
#*.wixproj merge=binary
#*.modelproj merge=binary
#*.sqlproj merge=binary
#*.wwaproj merge=binary
###############################################################################
# behavior for image files
#
# image files are treated as binary by default.
###############################################################################
#*.jpg binary
#*.png binary
#*.gif binary
###############################################################################
# diff behavior for common document formats
#
# Convert binary document formats to text before diffing them. This feature
# is only available from the command line. Turn it on by uncommenting the
# entries below.
###############################################################################
#*.doc diff=astextplain
#*.DOC diff=astextplain
#*.docx diff=astextplain
#*.DOCX diff=astextplain
#*.dot diff=astextplain
#*.DOT diff=astextplain
#*.pdf diff=astextplain
#*.PDF diff=astextplain
#*.rtf diff=astextplain
#*.RTF diff=astextplain

6
.gitignore vendored
View File

@ -1,6 +0,0 @@
/.vs
/Debug
/*.opensdf
/*.sdf
/*.opendb
/*.suo

112
.vscode/c_cpp_properties.json vendored Normal file
View File

@ -0,0 +1,112 @@
{
"configurations": [
{
"name": "Mac",
"includePath": [
"/usr/include",
"/usr/local/include",
"/opt/arduino-1.8.5/hardware/arduino/avr/cores/arduino",
"/opt/arduino-1.8.5/hardware/tools/avr/avr/include",
"/opt/arduino-1.8.5/hardware/arduino/avr/variants/standard",
"${workspaceRoot}",
"${workspaceRoot}/src"
],
"defines": [
"ARDUINO=160",
"__AVR__",
"UBRRH",
"__AVR_ATmega328P__",
"VS_INTELLISENSE"
],
"intelliSenseMode": "clang-x64",
"browse": {
"path": [
"/usr/include",
"/usr/local/include",
"${workspaceRoot}"
],
"limitSymbolsToIncludedHeaders": true,
"databaseFilename": ""
},
"macFrameworkPath": [
"/System/Library/Frameworks",
"/Library/Frameworks"
]
},
{
"name": "Linux",
"includePath": [
"/usr/include/c++/4.9",
"/usr/include/x86_64-linux-gnu/c++/4.9",
"/usr/include/c++/4.9/backward",
"/usr/lib/gcc/x86_64-linux-gnu/4.9/include",
"/usr/local/include",
"/usr/lib/gcc/x86_64-linux-gnu/4.9/include-fixed",
"/usr/include/x86_64-linux-gnu",
"/usr/include",
"/opt/arduino-1.8.5/hardware/arduino/avr/cores/arduino",
"/opt/arduino-1.8.5/hardware/tools/avr/avr/include",
"/opt/arduino-1.8.5/hardware/arduino/avr/variants/standard",
"${workspaceRoot}",
"${workspaceRoot}/src"
],
"defines": [
"ARDUINO=160",
"__AVR__",
"UBRRH",
"__AVR_ATmega328P__",
"VS_INTELLISENSE"
],
"intelliSenseMode": "clang-x64",
"browse": {
"path": [
"/usr/include/c++/4.9",
"/usr/include/x86_64-linux-gnu/c++/4.9",
"/usr/include/c++/4.9/backward",
"/usr/lib/gcc/x86_64-linux-gnu/4.9/include",
"/usr/local/include",
"/usr/lib/gcc/x86_64-linux-gnu/4.9/include-fixed",
"/usr/include/x86_64-linux-gnu",
"/usr/include",
"${workspaceRoot}"
],
"limitSymbolsToIncludedHeaders": true,
"databaseFilename": ""
},
"compilerPath": "/usr/bin/gcc",
"cStandard": "c11",
"cppStandard": "c++14"
},
{
"name": "Win32",
"includePath": [
"C:/Program Files (x86)/Microsoft Visual Studio 14.0/VC/include",
"/opt/arduino-1.8.5/hardware/arduino/avr/cores/arduino",
"/opt/arduino-1.8.5/hardware/tools/avr/avr/include",
"/opt/arduino-1.8.5/hardware/arduino/avr/variants/standard",
"${workspaceRoot}",
"${workspaceRoot}/src"
],
"defines": [
"_DEBUG",
"UNICODE",
"_UNICODE",
"ARDUINO=160",
"__AVR__",
"UBRRH",
"__AVR_ATmega328P__",
"VS_INTELLISENSE"
],
"intelliSenseMode": "msvc-x64",
"browse": {
"path": [
"C:/Program Files (x86)/Microsoft Visual Studio 14.0/VC/include/*",
"${workspaceRoot}"
],
"limitSymbolsToIncludedHeaders": true,
"databaseFilename": ""
}
}
],
"version": 3
}

187
FakeD2413.ino Normal file
View File

@ -0,0 +1,187 @@
/* Ian Fleet 2018
All files, software, schematics and designs are provided as-is with no warranty.
All files, software, schematics and designs are for experimental/hobby use.
Under no circumstances should any part be used for critical systems where safety,
life or property depends upon it. You are responsible for all use.
You are free to use, modify, derive or otherwise extend for your own purposes
*/
// This example emulates a DS2413 device on an Arduino UNO or ATTINY85
// note : physical DS2413 devices found in 2018 are often clones with
// a device code different to the Maxim datasheet
#include "Arduino.h"
#include "OneWireSlave.h"
#include "comptime.h"
// This is the pin that will be used for one-wire data
// On Arduino Uno, you can use pin 2 or pin 3
Pin oneWireData(2); // PB2 only attiny85 pin with rising/falling interrupts
//Pin led(0);
// This sample emulates a DS2413 device , so we start by defining the available commands
const byte DS2413_FAMILY_ID = 0x3A; // Maxim DS2413 device code
const byte CLONE_FAMILY_ID = 0x85; // clone device code
const byte DS2413_ACCESS_READ = 0xF5;
const byte DS2413_ACCESS_WRITE = 0x5A;
const byte DS2413_ACK_SUCCESS = 0xAA;
// generate unique id
const byte owROM[7] = { DS2413_FAMILY_ID, SERIAL_NUMBER};
// will be calculated in begin:---------------^^^^
// or use fixed id - make sure it doesn't conflict with another device
//const byte owROM[7] = { 0x3A, 0x00, 0x55, 0xAA, 0x00, 0x11, 0x22 };
#define PIOA 3 // (pin 3)
#define PIOB 4 // (pin 4)
uint8_t latch = 0;
uint8_t statusbyte1 = 0;
uint8_t statusbyte2 = 0;
enum DeviceState
{
DS_WaitingReset,
DS_WaitingCommand,
DS_WaitingStatus1,
DS_WaitingStatus2,
};
volatile DeviceState state = DS_WaitingReset;
// scratchpad
volatile byte scratchpad[2];
volatile byte response[2];
// This function will be called each time the OneWire library has an event to notify (reset, error, byte received)
void owReceive(OneWireSlave::ReceiveEvent evt, byte data);
//////////////////////////////////////////
void setup()
{
// led.outputMode();
// led.writeLow();
// OSCCAL = 85;
// Setup the OneWire library
OWSlave.setReceiveCallback(&owReceive);
OWSlave.begin(owROM, oneWireData.getPinNumber());
}
//////////////////////////////////////////
void loop()
{
delay(10);
cli();//disable interrupts
// Be sure to not block interrupts for too long, OneWire timing is very tight for some operations. 1 or 2 microseconds (yes, microseconds, not milliseconds) can be too much depending on your master controller, but then it's equally unlikely that you block exactly at the moment where it matters.
// This can be mitigated by using error checking and retry in your high-level communication protocol. A good thing to do anyway.
sei();//enable interrupts
}
//////////////////////////////////////////
static uint8_t getstatus() {
uint8_t c = 0;
if (latch & 0x01) c |= 0x02;
if (digitalRead(PIOA)) c |= 0x01;
if (latch & 0x02) c |= 0x08;
if (digitalRead(PIOB)) c |= 0x04;
uint8_t x = (~c) << 4;
return x + c;
}
//////////////////////////////////////////
static void port(int PIO, bool stat) {
if (stat) {
digitalWrite(PIO, HIGH);
pinMode(PIO, INPUT);
} else {
pinMode(PIO, OUTPUT);
digitalWrite(PIO, LOW);
}
}
//////////////////////////////////////////
static void set(uint8_t val) {
latch = val;
port(PIOA, latch & 1);
port(PIOB, latch & 2);
//TODO copy latch to EEPROM
}
//////////////////////////////////////////
void owReceive(OneWireSlave::ReceiveEvent evt, byte data)
{
switch (evt)
{
case OneWireSlave::RE_Byte:
switch (state)
{
case DS_WaitingCommand:
switch (data)
{
case DS2413_ACCESS_WRITE:
state = DS_WaitingStatus1;
break;
case DS2413_ACCESS_READ:
state = DS_WaitingReset;
scratchpad[0] = getstatus();
OWSlave.beginWrite((const byte*)scratchpad, 1, 0);
break;
//case :
// break;
}
break;
case DS_WaitingStatus1:
statusbyte1 = data;
state = DS_WaitingStatus2;
break;
case DS_WaitingStatus2:
statusbyte2 = data;
if (statusbyte1 != ~statusbyte2) {
set(statusbyte1);
response[0] = DS2413_ACK_SUCCESS;
} else {
response[0] = 0x11; // mark error - real DS2413 does not do this
}
response[1] = getstatus();
OWSlave.beginWrite((const byte*)response, 2, 0);
state = DS_WaitingCommand;
break;
}
break;
case OneWireSlave::RE_Reset:
state = DS_WaitingCommand;
break;
case OneWireSlave::RE_Error:
state = DS_WaitingReset;
break;
}
}

View File

@ -1,6 +1,6 @@
The MIT License (MIT)
Copyright (c) 2015 Youen Toupin, aka neuoy
Copyright (c) 2018 Youen Toupin, aka neuoy
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@ -4,7 +4,10 @@
#include <inttypes.h>
#ifdef VS_INTELLISENSE
#define __attribute__()
#define __attribute__(...)
#define digitalPinToPort(pin) 0
#define digitalPinToBitMask(pin) 0
#define portInputRegister(arg1) 0
#endif
#if ARDUINO >= 100
@ -26,9 +29,57 @@
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask))
#if defined (__AVR_ATtiny85__)
#define CLEARINTERRUPT GIFR |= (1 << INTF0)
/* Note : The attiny85 clock speed = 16mhz (fuses L 0xF1, H 0xDF. E oxFF
OSCCAL VALUE must also be calibrated to 16mhz
*/
#define CLEARINTERRUPT GIFR |= (1 << INTF0) | (1<<PCIF);
#define USERTIMER_COMPA_vect TIMER1_COMPA_vect
__attribute__((always_inline)) static inline void UserTimer_Init( void )
{
TCCR1 = 0; //stop the timer
TCNT1 = 0;
//GTCCR |= (1<<PSR1); //reset the prescaler
TIMSK = 0; // clear timer interrupts enable
}
__attribute__((always_inline)) static inline void UserTimer_Run(int skipTicks)
{
TCNT1 = 0; //zero the timer
GTCCR |= (1 << PSR1); //reset the prescaler
OCR1A = skipTicks; //set the compare value
TCCR1 |= (1 << CTC1) | (0 << CS13) | (1 << CS12) | (1 << CS11) | (0 << CS10);//32 prescaler
//TCCR1 |= (1 << CTC1) | (0 << CS13) | (1 << CS12) | (0 << CS11) | (0 << CS10);//8 prescaler
TIMSK |= (1 << OCIE1A); //interrupt on Compare Match A
}
__attribute__((always_inline)) static inline void UserTimer_Stop()
{
TIMSK = 0; //&= ~(1 << OCIE1A);// clear timer interrupt enable
TCCR1 = 0;
}
#elif defined (__AVR_ATmega328P__)
#define CLEARINTERRUPT EIFR |= (1 << INTF0)
#define USERTIMER_COMPA_vect TIMER1_COMPA_vect
__attribute__((always_inline)) static inline void UserTimer_Init( void )
{
TCCR1A = 0;
TCCR1B = 0;
TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt
}
__attribute__((always_inline)) static inline void UserTimer_Run(short skipTicks)
{
TCNT1 = 0;
OCR1A = skipTicks;
// turn on CTC mode with 64 prescaler
TCCR1B = (1 << WGM12) | (1 << CS11) | (1 << CS10);
}
#define UserTimer_Stop() TCCR1B = 0
#endif
#elif defined(__MK20DX128__) || defined(__MK20DX256__)
@ -78,6 +129,7 @@
#error "Please define I/O register types here"
#endif
class Pin
{
private:
@ -108,22 +160,40 @@ public:
}
}
inline byte getPinNumber() { return pinNumber_; }
inline byte getPinNumber() {
return pinNumber_;
}
inline void inputMode() { DIRECT_MODE_INPUT(reg_, mask_); }
inline void outputMode() { DIRECT_MODE_OUTPUT(reg_, mask_); }
inline void inputMode() {
DIRECT_MODE_INPUT(reg_, mask_);
}
inline void outputMode() {
DIRECT_MODE_OUTPUT(reg_, mask_);
}
inline bool read() { return DIRECT_READ(reg_, mask_) == 1; }
inline void writeLow() { DIRECT_WRITE_LOW(reg_, mask_); }
inline void writeHigh() { DIRECT_WRITE_HIGH(reg_, mask_); }
inline void write(bool value) { if (value) writeHigh(); else writeLow(); }
inline bool read() {
return DIRECT_READ(reg_, mask_) == 1;
}
inline void writeLow() {
DIRECT_WRITE_LOW(reg_, mask_);
}
inline void writeHigh() {
DIRECT_WRITE_HIGH(reg_, mask_);
}
inline void write(bool value) {
if (value) writeHigh();
else writeLow();
}
inline void attachInterrupt(void (*handler)(), int mode)
{
CLEARINTERRUPT; // clear any pending interrupt (we want to call the handler only for interrupts happening after it is attached)
::attachInterrupt(interruptNumber_, handler, mode);
}
inline void detachInterrupt() { ::detachInterrupt(interruptNumber_); }
inline void detachInterrupt() {
::detachInterrupt(interruptNumber_);
}
};
#endif

View File

@ -1,32 +0,0 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio 2013
VisualStudioVersion = 12.0.31101.0
MinimumVisualStudioVersion = 10.0.40219.1
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "OneWireIO", "OneWireIO.vcxproj", "{3B500971-1570-460F-81C3-22AC3B7764B9}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Any CPU = Debug|Any CPU
Debug|Mixed Platforms = Debug|Mixed Platforms
Debug|Win32 = Debug|Win32
Release|Any CPU = Release|Any CPU
Release|Mixed Platforms = Release|Mixed Platforms
Release|Win32 = Release|Win32
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{3B500971-1570-460F-81C3-22AC3B7764B9}.Debug|Any CPU.ActiveCfg = Debug|Win32
{3B500971-1570-460F-81C3-22AC3B7764B9}.Debug|Mixed Platforms.ActiveCfg = Debug|Win32
{3B500971-1570-460F-81C3-22AC3B7764B9}.Debug|Mixed Platforms.Build.0 = Debug|Win32
{3B500971-1570-460F-81C3-22AC3B7764B9}.Debug|Win32.ActiveCfg = Debug|Win32
{3B500971-1570-460F-81C3-22AC3B7764B9}.Debug|Win32.Build.0 = Debug|Win32
{3B500971-1570-460F-81C3-22AC3B7764B9}.Release|Any CPU.ActiveCfg = Release|Win32
{3B500971-1570-460F-81C3-22AC3B7764B9}.Release|Mixed Platforms.ActiveCfg = Release|Win32
{3B500971-1570-460F-81C3-22AC3B7764B9}.Release|Mixed Platforms.Build.0 = Release|Win32
{3B500971-1570-460F-81C3-22AC3B7764B9}.Release|Win32.ActiveCfg = Release|Win32
{3B500971-1570-460F-81C3-22AC3B7764B9}.Release|Win32.Build.0 = Release|Win32
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -1,112 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="14.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
<Configuration>Debug</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">
<Configuration>Release</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{3B500971-1570-460F-81C3-22AC3B7764B9}</ProjectGuid>
<RootNamespace>OneWireIO</RootNamespace>
<ProjectName>OneWireIO</ProjectName>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<CharacterSet>MultiByte</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>MultiByte</CharacterSet>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup />
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<SDLCheck>true</SDLCheck>
<AdditionalIncludeDirectories>D:\Outils\Arduino\hardware\arduino\avr\cores\arduino;D:\Outils\Arduino\hardware\tools\avr\avr\include;C:\Program Files %28x86%29\Arduino\hardware\arduino\avr\cores\arduino;C:\Program Files %28x86%29\Arduino\hardware\tools\avr\avr\include</AdditionalIncludeDirectories>
<PreprocessorDefinitions>_MBCS;%(PreprocessorDefinitions);ARDUINO=160;__AVR__;UBRRH;__AVR_ATmega328P__;VS_INTELLISENSE</PreprocessorDefinitions>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
<PostBuildEvent>
<Command>if exist $(ProjectDir)$(IntDir)$(ProjectName).ino.elf (
echo Elf generated
) else (
echo no output
exit /B 1
)</Command>
</PostBuildEvent>
<PostBuildEvent />
<CustomBuild>
<Command>
</Command>
</CustomBuild>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<SDLCheck>true</SDLCheck>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
</Link>
</ItemDefinitionGroup>
<ItemGroup>
<CustomBuild Include="OneWireIO.ino">
<FileType>Document</FileType>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">false</ExcludedFromBuild>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">if exist $(ProjectDir)$(IntDir)$(ProjectName).ino.elf del $(ProjectDir)$(IntDir)$(ProjectName).ino.elf
"C:\Program Files (x86)\Arduino\arduino.exe" --upload --pref build.path=$(ProjectDir)$(Configuration) %(FullPath) | more
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">always_build_$(ProjectConfiguration).dummy</Outputs>
<AdditionalInputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
</AdditionalInputs>
<Message Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">Building and uploading sketch...</Message>
</CustomBuild>
</ItemGroup>
<ItemGroup>
<ClCompile Include="OneWireSlave.cpp">
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">true</ExcludedFromBuild>
</ClCompile>
<ClCompile Include="TimerOne.cpp">
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">true</ExcludedFromBuild>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="config\known_16bit_timers.h" />
<ClInclude Include="LowLevel.h" />
<ClInclude Include="OneWireSlave.h" />
<ClInclude Include="TimerOne.h" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>

View File

@ -1,16 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<ClCompile Include="OneWireSlave.cpp" />
<ClCompile Include="TimerOne.cpp" />
</ItemGroup>
<ItemGroup>
<ClInclude Include="LowLevel.h" />
<ClInclude Include="OneWireSlave.h" />
<ClInclude Include="TimerOne.h" />
<ClInclude Include="config\known_16bit_timers.h" />
</ItemGroup>
<ItemGroup>
<CustomBuild Include="OneWireIO.ino" />
</ItemGroup>
</Project>

View File

@ -1,5 +1,4 @@
#include "OneWireSlave.h"
#include "TimerOne.h"
// uncomment this line to enable sending messages along with errors (but takes more program memory)
//#define ERROR_MESSAGES
@ -12,16 +11,37 @@
namespace
{
#if defined (__AVR_ATtiny85__)
const unsigned long ResetMinDuration = 480; // min 480us / 484us measured
const unsigned long ResetMaxDuration = 640; //
const unsigned long PresenceWaitDuration = 35; // spec 15us to 60us / 40us measured
const unsigned long PresenceDuration = 150; // spec 60us to 240us / 148us measured
const unsigned long ReadBitSamplingTime = 15; // spec > 15us to 60us / 31us measured
// SendBitDuration varies the bus release time to indicate a "1"
// measured total send bit duration is 63us versus 60us in the spec
const unsigned long SendBitDuration = 20; // bus release time spec 15us / measured 19us
#elif defined (__AVR_ATmega328P__)
const unsigned long ResetMinDuration = 480;
const unsigned long ResetMaxDuration = 900;
const unsigned long PresenceWaitDuration = 15;
const unsigned long PresenceDuration = 200;
const unsigned long ReadBitSamplingTime = 25;
const unsigned long SendBitDuration = 35;
#endif
const byte ReceiveCommand = (byte) - 1;
void(*timerEvent)() = 0;
@ -33,8 +53,8 @@ byte OneWireSlave::rom_[8];
byte OneWireSlave::scratchpad_[8];
Pin OneWireSlave::pin_;
unsigned long OneWireSlave::resetStart_;
unsigned long OneWireSlave::lastReset_;
unsigned long OneWireSlave::resetStart_ = 0;;
unsigned long OneWireSlave::lastReset_ = 0;
void(*OneWireSlave::receiveBitCallback_)(bool bit, bool error);
void(*OneWireSlave::bitSentCallback_)(bool error);
@ -69,9 +89,9 @@ void(*OneWireSlave::singleBitSentCallback_)(bool error);
void(*OneWireSlave::logCallback_)(const char* message);
void timer1Interrupt()
ISR(USERTIMER_COMPA_vect) // timer1 interrupt
{
Timer1.detachInterrupt();
UserTimer_Stop(); // disable clock
void(*event)() = timerEvent;
timerEvent = 0;
event();
@ -99,8 +119,7 @@ void OneWireSlave::begin(const byte* rom, byte pinNumber)
pin_.writeLow(); // make sure the internal pull-up resistor is disabled
// prepare hardware timer
Timer1.initialize(4);
Timer1.stop();
UserTimer_Init();
// start 1-wire activity
beginWaitReset_();
@ -233,22 +252,36 @@ byte OneWireSlave::crc8(const byte* data, short numBytes)
return crc;
}
#if defined (__AVR_ATtiny85__)
void OneWireSlave::setTimerEvent_(short delayMicroSeconds, void(*handler)())
{
delayMicroSeconds -= 8; // remove overhead (tuned on attiny85, values 0 - 10 work ok)
short skipTicks = delayMicroSeconds / 2; // 16mhz clock, prescaler = 32
if (skipTicks < 1) skipTicks = 1;
timerEvent = handler;
UserTimer_Run(skipTicks);
}
#elif defined (__AVR_ATmega328P__)
void OneWireSlave::setTimerEvent_(short delayMicroSeconds, void(*handler)())
{
delayMicroSeconds -= 10; // remove overhead (tuned on Arduino Uno)
if (delayMicroSeconds < 1)
delayMicroSeconds = 1;
// prescaler 64
short skipTicks = (delayMicroSeconds - 3) / 4; // round the micro seconds delay to a number of ticks to skip (4us per tick, so 4us must skip 0 tick, 8us must skip 1 tick, etc.)
if (skipTicks < 1) skipTicks = 1;
timerEvent = handler;
Timer1.attachInterrupt(timer1Interrupt);
Timer1.setPeriod(delayMicroSeconds);
Timer1.start();
UserTimer_Run(skipTicks);
}
#endif
void OneWireSlave::disableTimer_()
{
Timer1.stop();
Timer1.detachInterrupt();
UserTimer_Stop();
}
void OneWireSlave::onEnterInterrupt_()
@ -391,9 +424,11 @@ void OneWireSlave::beginWaitReset_()
disableTimer_();
pin_.inputMode();
pin_.attachInterrupt(&OneWireSlave::waitReset_, CHANGE);
resetStart_ = (unsigned int)-1;
//resetStart_ = (unsigned int) - 1;
resetStart_ = (unsigned long) - 1;
}
void OneWireSlave::waitReset_()
{
onEnterInterrupt_();
@ -401,22 +436,28 @@ void OneWireSlave::waitReset_()
unsigned long now = micros();
if (state)
{
if (resetStart_ == (unsigned int)-1)
if (resetStart_ == (unsigned long) - 1)
{
onLeaveInterrupt_();
return;
}
unsigned long resetDuration = now - resetStart_;
resetStart_ = (unsigned int)-1;
static unsigned long resetDuration = now - resetStart_;
//resetStart_ = (unsigned int) - 1;
resetStart_ = (unsigned long) - 1;
if (resetDuration >= ResetMinDuration)
{
if (resetDuration > ResetMaxDuration)
{
ERROR("Reset too long");
onLeaveInterrupt_();
return;
}
// The following test has been removed because of a bug which causes the value of
// resetduration to exceed ResetMaxDuration intermittently. This happens
// only on the attiny platform - possibly due to the implementation of
// micros() in the attiny core
// if (resetDuration > ResetMaxDuration)
// {
// ERROR("Reset too long");
// onLeaveInterrupt_();
// return;
// }
lastReset_ = now;
pin_.detachInterrupt();
@ -425,6 +466,9 @@ void OneWireSlave::waitReset_()
endWrite_(true, false);
if (clientReceiveCallback_ != 0)
clientReceiveCallback_(RE_Reset, 0);
} else
{
//ERROR("Reset too short");
}
}
else

View File

@ -21,13 +21,19 @@ public:
void end();
//! Sets (or replaces) a function to be called when something is received. The callback is executed from interrupts and should be as short as possible. Failure to return quickly can prevent the library from correctly reading the next byte.
void setReceiveCallback(void(*callback)(ReceiveEvent evt, byte data)) { clientReceiveCallback_ = callback; }
void setReceiveCallback(void(*callback)(ReceiveEvent evt, byte data)) {
clientReceiveCallback_ = callback;
}
//! Sets (or replaces) a function to be called when a bit is received. The byte reception callback is called after that if the received bit was the last of a byte. The callback is executed from interrupts and should be as short as possible. Failure to return quickly can prevent the library from correctly reading the next bit.
void setReceiveBitCallback(void(*callback)(bool bit)) { clientReceiveBitCallback_ = callback; }
void setReceiveBitCallback(void(*callback)(bool bit)) {
clientReceiveBitCallback_ = callback;
}
//! Sets (or replaces) a function to be called when the library has a message to log, if the functionality is enabled in OneWireSlave.cpp. This is for debugging purposes.
void setLogCallback(void(*callback)(const char* message)) { logCallback_ = callback; }
void setLogCallback(void(*callback)(const char* message)) {
logCallback_ = callback;
}
//! Writes the specified bytes synchronously. This function blocks until the write operation has finished. Do not call from an interrupt handler! Returns true in case of success, false if an error occurs.
bool write(const byte* bytes, short numBytes);
@ -44,6 +50,7 @@ public:
//! Cancels any pending write operation, started by writeBit or write. If this function is called before the master asked for a bit, then nothing is sent to the master.
void stopWrite();
//! Sets the alarmed state, that is used when the master makes a conditional search of alarmed devices.
void alarmed(bool value);
static byte crc8(const byte* data, short numBytes);

View File

@ -1,22 +1,8 @@
# OneWireArduinoSlave
An arduino library to communicate using the Dallas one-wire protocol, where the Arduino takes the role of a slave. Entirely implemented using interrupts, you can perform other tasks while communication is handled in background.
## 1-wire introduction
1-wire allows communication over long distances (100m and more, see Dallas documentation for details) with a single wire (plus a ground wire). You can put as much devices as you want on the same wire (they communicate one at a time). 1-wire also allows to send power over the data wire (parasitic power), but, though I haven't tried, I don't believe it would work with an Arduino. You'll need a separate 5V power source, which, if it comes next to your data wire, means you need 3 wires (5V, data, and ground). You'll also need a master controller, for example the USB adapter DS9490R, to connect to a computer, that will control communication with all 1-wire devices.
Notes
## How to use this library
This library allows you to emulate existing 1-wire devices with an Arduino, or to create your own protocol. All low-level details are handled by the library, such as reset detection, ROM matching, byte sending and receiving. Look at the demo sketch to see an example.
Added support for the attiny85 platform at 16mhz
There are only 3 important functions:
- `void setReceiveCallback(void(*callback)(ReceiveEvent evt, byte data))` sets the function that will be called back when an event occurs, such as when a byte is received
- `void begin(byte* rom, byte pinNumber)` starts the library, which will respond to the provided ROM (must be unique on your network) on the specified Arduino pin. The ROM is cloned by the library, so you can discard your buffer immediately if you want.
- `void write(byte* bytes, short numBytes, void(*complete)(bool error))` starts writing one or more bytes, and will call the provided callback (optional) when it's done. The buffer you provide here must stay available until the end of the write operation, which happens in background. Do not use local variables.
## Notes about the interrupt-based implementation
Since the library is implemented using interrupts, none of its functions will block: you can continue execute your code immediately.
This also means callbacks are called from interrupt handlers, so you must make them very short to not block further communication.
You must also be careful when you explicitely block interrupts, as the 1-wire protocol has very tight timings, especially when writing bytes (which also happens when searching for device ROMs): a delay of 3 microseconds (yes, microseconds, not milliseconds) can be enough for some (quite intolerant) masters to miss a bit.
But if your code only blocks interrupts for reasonably short time, the probability to block exactly at the bad moment is low, so you can easily mitigate the issue by adding CRC checks in your high-level communication protocol, and retrying when an error is detected. This is an important thing to do anyway because 1-wire does not natively perform any error checking (excepted for ROM operations which already contain a CRC byte). Standard 1-wire devices also include CRC checks in their specific protocols.
Included a OneWireSlave implementation of a DS2413 (FakeDS2413) for both the ATMEGA328 and ATTINY85 platforms

View File

@ -1,49 +0,0 @@
/*
* Interrupt and PWM utilities for 16 bit Timer1 on ATmega168/328
* Original code by Jesse Tane for http://labs.ideo.com August 2008
* Modified March 2009 by Jérôme Despatis and Jesse Tane for ATmega328 support
* Modified June 2009 by Michael Polli and Jesse Tane to fix a bug in setPeriod() which caused the timer to stop
* Modified Oct 2009 by Dan Clemens to work with timer1 of the ATMega1280 or Arduino Mega
* Modified April 2012 by Paul Stoffregen
* Modified again, June 2014 by Paul Stoffregen
* This version has been downloaded from https://github.com/PaulStoffregen/TimerOne (commit aaeb4a36f5f23e99e6011bea77cf76abb912e13a)
*
* This is free software. You can redistribute it and/or modify it under
* the terms of Creative Commons Attribution 3.0 United States License.
* To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/us/
* or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
*
*/
#include "TimerOne.h"
TimerOne Timer1; // preinstatiate
unsigned short TimerOne::pwmPeriod = 0;
unsigned char TimerOne::clockSelectBits = 0;
void (*TimerOne::isrCallback)() = TimerOne::isrDefaultUnused;
// interrupt service routine that wraps a user defined function supplied by attachInterrupt
#if defined(__AVR__)
ISR(TIMER1_OVF_vect)
{
Timer1.isrCallback();
}
#elif defined(__arm__) && defined(CORE_TEENSY)
void ftm1_isr(void)
{
uint32_t sc = FTM1_SC;
#ifdef KINETISL
if (sc & 0x80) FTM1_SC = sc;
#else
if (sc & 0x80) FTM1_SC = sc & 0x7F;
#endif
Timer1.isrCallback();
}
#endif
void TimerOne::isrDefaultUnused()
{
}

View File

@ -1,355 +0,0 @@
/*
* Interrupt and PWM utilities for 16 bit Timer1 on ATmega168/328
* Original code by Jesse Tane for http://labs.ideo.com August 2008
* Modified March 2009 by Jérôme Despatis and Jesse Tane for ATmega328 support
* Modified June 2009 by Michael Polli and Jesse Tane to fix a bug in setPeriod() which caused the timer to stop
* Modified April 2012 by Paul Stoffregen - portable to other AVR chips, use inline functions
* Modified again, June 2014 by Paul Stoffregen - support Teensy 3.x & even more AVR chips
* This version has been downloaded from https://github.com/PaulStoffregen/TimerOne (commit aaeb4a36f5f23e99e6011bea77cf76abb912e13a)
*
*
* This is free software. You can redistribute it and/or modify it under
* the terms of Creative Commons Attribution 3.0 United States License.
* To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/us/
* or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
*
*/
#ifndef TimerOne_h_
#define TimerOne_h_
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "config/known_16bit_timers.h"
#define TIMER1_RESOLUTION 65536UL // Timer1 is 16 bit
// Placing nearly all the code in this .h file allows the functions to be
// inlined by the compiler. In the very common case with constant values
// the compiler will perform all calculations and simply write constants
// to the hardware registers (for example, setPeriod).
class TimerOne
{
#if defined(__AVR__)
public:
//****************************
// Configuration
//****************************
void initialize(unsigned long microseconds=1000000) __attribute__((always_inline)) {
TCCR1B = _BV(WGM13); // set mode as phase and frequency correct pwm, stop the timer
TCCR1A = 0; // clear control register A
setPeriod(microseconds);
}
void setPeriod(unsigned long microseconds) __attribute__((always_inline)) {
const unsigned long cycles = (F_CPU / 2000000) * microseconds;
if (cycles < TIMER1_RESOLUTION) {
clockSelectBits = _BV(CS10);
pwmPeriod = cycles;
} else
if (cycles < TIMER1_RESOLUTION * 8) {
clockSelectBits = _BV(CS11);
pwmPeriod = cycles / 8;
} else
if (cycles < TIMER1_RESOLUTION * 64) {
clockSelectBits = _BV(CS11) | _BV(CS10);
pwmPeriod = cycles / 64;
} else
if (cycles < TIMER1_RESOLUTION * 256) {
clockSelectBits = _BV(CS12);
pwmPeriod = cycles / 256;
} else
if (cycles < TIMER1_RESOLUTION * 1024) {
clockSelectBits = _BV(CS12) | _BV(CS10);
pwmPeriod = cycles / 1024;
} else {
clockSelectBits = _BV(CS12) | _BV(CS10);
pwmPeriod = TIMER1_RESOLUTION - 1;
}
ICR1 = pwmPeriod;
TCCR1B = _BV(WGM13) | clockSelectBits;
}
//****************************
// Run Control
//****************************
void start() __attribute__((always_inline)) {
TCCR1B = 0;
TCNT1 = 0; // TODO: does this cause an undesired interrupt?
resume();
}
void stop() __attribute__((always_inline)) {
TCCR1B = _BV(WGM13);
}
void restart() __attribute__((always_inline)) {
start();
}
void resume() __attribute__((always_inline)) {
TCCR1B = _BV(WGM13) | clockSelectBits;
}
//****************************
// PWM outputs
//****************************
void setPwmDuty(char pin, unsigned int duty) __attribute__((always_inline)) {
unsigned long dutyCycle = pwmPeriod;
dutyCycle *= duty;
dutyCycle >>= 10;
if (pin == TIMER1_A_PIN) OCR1A = dutyCycle;
#ifdef TIMER1_B_PIN
else if (pin == TIMER1_B_PIN) OCR1B = dutyCycle;
#endif
#ifdef TIMER1_C_PIN
else if (pin == TIMER1_C_PIN) OCR1C = dutyCycle;
#endif
}
void pwm(char pin, unsigned int duty) __attribute__((always_inline)) {
if (pin == TIMER1_A_PIN) { pinMode(TIMER1_A_PIN, OUTPUT); TCCR1A |= _BV(COM1A1); }
#ifdef TIMER1_B_PIN
else if (pin == TIMER1_B_PIN) { pinMode(TIMER1_B_PIN, OUTPUT); TCCR1A |= _BV(COM1B1); }
#endif
#ifdef TIMER1_C_PIN
else if (pin == TIMER1_C_PIN) { pinMode(TIMER1_C_PIN, OUTPUT); TCCR1A |= _BV(COM1C1); }
#endif
setPwmDuty(pin, duty);
TCCR1B = _BV(WGM13) | clockSelectBits;
}
void pwm(char pin, unsigned int duty, unsigned long microseconds) __attribute__((always_inline)) {
if (microseconds > 0) setPeriod(microseconds);
pwm(pin, duty);
}
void disablePwm(char pin) __attribute__((always_inline)) {
if (pin == TIMER1_A_PIN) TCCR1A &= ~_BV(COM1A1);
#ifdef TIMER1_B_PIN
else if (pin == TIMER1_B_PIN) TCCR1A &= ~_BV(COM1B1);
#endif
#ifdef TIMER1_C_PIN
else if (pin == TIMER1_C_PIN) TCCR1A &= ~_BV(COM1C1);
#endif
}
//****************************
// Interrupt Function
//****************************
void attachInterrupt(void (*isr)()) __attribute__((always_inline)) {
isrCallback = isr;
TIMSK1 = _BV(TOIE1);
}
void attachInterrupt(void (*isr)(), unsigned long microseconds) __attribute__((always_inline)) {
if(microseconds > 0) setPeriod(microseconds);
attachInterrupt(isr);
}
void detachInterrupt() __attribute__((always_inline)) {
TIMSK1 = 0;
}
static void (*isrCallback)();
static void isrDefaultUnused();
private:
// properties
static unsigned short pwmPeriod;
static unsigned char clockSelectBits;
#elif defined(__arm__) && defined(CORE_TEENSY)
#if defined(KINETISK)
#define F_TIMER F_BUS
#elif defined(KINETISL)
#define F_TIMER (F_PLL/2)
#endif
public:
//****************************
// Configuration
//****************************
void initialize(unsigned long microseconds=1000000) __attribute__((always_inline)) {
setPeriod(microseconds);
}
void setPeriod(unsigned long microseconds) __attribute__((always_inline)) {
const unsigned long cycles = (F_TIMER / 2000000) * microseconds;
// A much faster if-else
// This is like a binary serch tree and no more than 3 conditions are evaluated.
// I haven't checked if this becomes significantly longer ASM than the simple ladder.
// It looks very similar to the ladder tho: same # of if's and else's
/*
// This code does not work properly in all cases :(
// https://github.com/PaulStoffregen/TimerOne/issues/17
if (cycles < TIMER1_RESOLUTION * 16) {
if (cycles < TIMER1_RESOLUTION * 4) {
if (cycles < TIMER1_RESOLUTION) {
clockSelectBits = 0;
pwmPeriod = cycles;
}else{
clockSelectBits = 1;
pwmPeriod = cycles >> 1;
}
}else{
if (cycles < TIMER1_RESOLUTION * 8) {
clockSelectBits = 3;
pwmPeriod = cycles >> 3;
}else{
clockSelectBits = 4;
pwmPeriod = cycles >> 4;
}
}
}else{
if (cycles > TIMER1_RESOLUTION * 64) {
if (cycles > TIMER1_RESOLUTION * 128) {
clockSelectBits = 7;
pwmPeriod = TIMER1_RESOLUTION - 1;
}else{
clockSelectBits = 7;
pwmPeriod = cycles >> 7;
}
}
else{
if (cycles > TIMER1_RESOLUTION * 32) {
clockSelectBits = 6;
pwmPeriod = cycles >> 6;
}else{
clockSelectBits = 5;
pwmPeriod = cycles >> 5;
}
}
}
*/
if (cycles < TIMER1_RESOLUTION) {
clockSelectBits = 0;
pwmPeriod = cycles;
} else
if (cycles < TIMER1_RESOLUTION * 2) {
clockSelectBits = 1;
pwmPeriod = cycles >> 1;
} else
if (cycles < TIMER1_RESOLUTION * 4) {
clockSelectBits = 2;
pwmPeriod = cycles >> 2;
} else
if (cycles < TIMER1_RESOLUTION * 8) {
clockSelectBits = 3;
pwmPeriod = cycles >> 3;
} else
if (cycles < TIMER1_RESOLUTION * 16) {
clockSelectBits = 4;
pwmPeriod = cycles >> 4;
} else
if (cycles < TIMER1_RESOLUTION * 32) {
clockSelectBits = 5;
pwmPeriod = cycles >> 5;
} else
if (cycles < TIMER1_RESOLUTION * 64) {
clockSelectBits = 6;
pwmPeriod = cycles >> 6;
} else
if (cycles < TIMER1_RESOLUTION * 128) {
clockSelectBits = 7;
pwmPeriod = cycles >> 7;
} else {
clockSelectBits = 7;
pwmPeriod = TIMER1_RESOLUTION - 1;
}
uint32_t sc = FTM1_SC;
FTM1_SC = 0;
FTM1_MOD = pwmPeriod;
FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_CPWMS | clockSelectBits | (sc & FTM_SC_TOIE);
}
//****************************
// Run Control
//****************************
void start() __attribute__((always_inline)) {
stop();
FTM1_CNT = 0;
resume();
}
void stop() __attribute__((always_inline)) {
FTM1_SC = FTM1_SC & (FTM_SC_TOIE | FTM_SC_CPWMS | FTM_SC_PS(7));
}
void restart() __attribute__((always_inline)) {
start();
}
void resume() __attribute__((always_inline)) {
FTM1_SC = (FTM1_SC & (FTM_SC_TOIE | FTM_SC_PS(7))) | FTM_SC_CPWMS | FTM_SC_CLKS(1);
}
//****************************
// PWM outputs
//****************************
void setPwmDuty(char pin, unsigned int duty) __attribute__((always_inline)) {
unsigned long dutyCycle = pwmPeriod;
dutyCycle *= duty;
dutyCycle >>= 10;
if (pin == TIMER1_A_PIN) {
FTM1_C0V = dutyCycle;
} else if (pin == TIMER1_B_PIN) {
FTM1_C1V = dutyCycle;
}
}
void pwm(char pin, unsigned int duty) __attribute__((always_inline)) {
setPwmDuty(pin, duty);
if (pin == TIMER1_A_PIN) {
*portConfigRegister(TIMER1_A_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
} else if (pin == TIMER1_B_PIN) {
*portConfigRegister(TIMER1_B_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
}
}
void pwm(char pin, unsigned int duty, unsigned long microseconds) __attribute__((always_inline)) {
if (microseconds > 0) setPeriod(microseconds);
pwm(pin, duty);
}
void disablePwm(char pin) __attribute__((always_inline)) {
if (pin == TIMER1_A_PIN) {
*portConfigRegister(TIMER1_A_PIN) = 0;
} else if (pin == TIMER1_B_PIN) {
*portConfigRegister(TIMER1_B_PIN) = 0;
}
}
//****************************
// Interrupt Function
//****************************
void attachInterrupt(void (*isr)()) __attribute__((always_inline)) {
isrCallback = isr;
FTM1_SC |= FTM_SC_TOIE;
NVIC_ENABLE_IRQ(IRQ_FTM1);
}
void attachInterrupt(void (*isr)(), unsigned long microseconds) __attribute__((always_inline)) {
if(microseconds > 0) setPeriod(microseconds);
attachInterrupt(isr);
}
void detachInterrupt() __attribute__((always_inline)) {
FTM1_SC &= ~FTM_SC_TOIE;
NVIC_DISABLE_IRQ(IRQ_FTM1);
}
static void (*isrCallback)();
static void isrDefaultUnused();
private:
// properties
static unsigned short pwmPeriod;
static unsigned char clockSelectBits;
#undef F_TIMER
#endif
};
extern TimerOne Timer1;
#endif

21
comptime.h Normal file
View File

@ -0,0 +1,21 @@
// copied - source unknown
#define YY (((__DATE__[9]-'0')*16 + __DATE__[10])-'0')
#define MMM (\
__DATE__ [2] == '?' ? 1 \
: __DATE__ [2] == 'n' ? (__DATE__ [1] == 'a' ? 1 : 6) \
: __DATE__ [2] == 'b' ? 2 \
: __DATE__ [2] == 'r' ? (__DATE__ [0] == 'M' ? 3 : 4) \
: __DATE__ [2] == 'y' ? 5 \
: __DATE__ [2] == 'l' ? 7 \
: __DATE__ [2] == 'g' ? 8 \
: __DATE__ [2] == 'p' ? 9 \
: __DATE__ [2] == 't' ? 16 \
: __DATE__ [2] == 'v' ? 17 \
: 18)
#define DD ( __DATE__[4] == '?' ? 1 : ((__DATE__[4] == ' ' ? 0 : ((__DATE__[4] - '0') * 16)) + __DATE__[5] - '0'))
#define TT (((__TIME__[0] - '0') * 16) + __TIME__[1] - '0')
#define MM (((__TIME__[3] - '0') * 16) + __TIME__[4] - '0')
#define SS (((__TIME__[6] - '0') * 16) + __TIME__[7] - '0')
#define SERIAL_NUMBER YY, MMM, DD, TT, MM, SS

View File

@ -1,153 +0,0 @@
#ifndef known_16bit_timers_header_
#define known_16bit_timers_header_
// Wiring-S
//
#if defined(__AVR_ATmega644P__) && defined(WIRING)
#define TIMER1_A_PIN 5
#define TIMER1_B_PIN 4
#define TIMER1_ICP_PIN 6
// Teensy 2.0
//
#elif defined(__AVR_ATmega32U4__) && defined(CORE_TEENSY)
#define TIMER1_A_PIN 14
#define TIMER1_B_PIN 15
#define TIMER1_C_PIN 4
#define TIMER1_ICP_PIN 22
#define TIMER1_CLK_PIN 11
#define TIMER3_A_PIN 9
#define TIMER3_ICP_PIN 10
// Teensy++ 2.0
#elif defined(__AVR_AT90USB1286__) && defined(CORE_TEENSY)
#define TIMER1_A_PIN 25
#define TIMER1_B_PIN 26
#define TIMER1_C_PIN 27
#define TIMER1_ICP_PIN 4
#define TIMER1_CLK_PIN 6
#define TIMER3_A_PIN 16
#define TIMER3_B_PIN 15
#define TIMER3_C_PIN 14
#define TIMER3_ICP_PIN 17
#define TIMER3_CLK_PIN 13
// Teensy 3.0
//
#elif defined(__MK20DX128__)
#define TIMER1_A_PIN 3
#define TIMER1_B_PIN 4
#define TIMER1_ICP_PIN 4
// Teensy 3.1 / Teensy 3.2
//
#elif defined(__MK20DX256__)
#define TIMER1_A_PIN 3
#define TIMER1_B_PIN 4
#define TIMER1_ICP_PIN 4
#define TIMER3_A_PIN 32
#define TIMER3_B_PIN 25
#define TIMER3_ICP_PIN 32
// Teensy 3.5 / Teensy 3.6
//
#elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
#define TIMER1_A_PIN 3
#define TIMER1_B_PIN 4
#define TIMER1_ICP_PIN 4
#define TIMER3_A_PIN 29
#define TIMER3_B_PIN 30
#define TIMER3_ICP_PIN 29
// Teensy-LC
//
#elif defined(__MKL26Z64__)
#define TIMER1_A_PIN 16
#define TIMER1_B_PIN 17
#define TIMER1_ICP_PIN 17
#define TIMER3_A_PIN 3
#define TIMER3_B_PIN 4
#define TIMER3_ICP_PIN 4
// Arduino Mega
//
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TIMER1_A_PIN 11
#define TIMER1_B_PIN 12
#define TIMER1_C_PIN 13
#define TIMER3_A_PIN 5
#define TIMER3_B_PIN 2
#define TIMER3_C_PIN 3
#define TIMER4_A_PIN 6
#define TIMER4_B_PIN 7
#define TIMER4_C_PIN 8
#define TIMER4_ICP_PIN 49
#define TIMER5_A_PIN 46
#define TIMER5_B_PIN 45
#define TIMER5_C_PIN 44
#define TIMER3_ICP_PIN 48
#define TIMER3_CLK_PIN 47
// Arduino Leonardo, Yun, etc
//
#elif defined(__AVR_ATmega32U4__)
#define TIMER1_A_PIN 9
#define TIMER1_B_PIN 10
#define TIMER1_C_PIN 11
#define TIMER1_ICP_PIN 4
#define TIMER1_CLK_PIN 12
#define TIMER3_A_PIN 5
#define TIMER3_ICP_PIN 13
// Uno, Duemilanove, LilyPad, etc
//
#elif defined (__AVR_ATmega168__) || defined (__AVR_ATmega328P__)
#define TIMER1_A_PIN 9
#define TIMER1_B_PIN 10
#define TIMER1_ICP_PIN 8
#define TIMER1_CLK_PIN 5
// Sanguino
//
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
#define TIMER1_A_PIN 13
#define TIMER1_B_PIN 12
#define TIMER1_ICP_PIN 14
#define TIMER1_CLK_PIN 1
// Wildfire - Wicked Devices
//
#elif defined(__AVR_ATmega1284P__) && defined(WILDFIRE_VERSION) && WILDFIRE_VERSION >= 3
#define TIMER1_A_PIN 5 // PD5
#define TIMER1_B_PIN 8 // PD4
#define TIMER1_ICP_PIN 6 // PD6
#define TIMER1_CLK_PIN 23 // PB1
#define TIMER3_A_PIN 12 // PB6
#define TIMER3_B_PIN 13 // PB7
#define TIMER3_ICP_PIN 9 // PB5
#define TIMER3_CLK_PIN 0 // PD0
#elif defined(__AVR_ATmega1284P__) && defined(WILDFIRE_VERSION) && WILDFIRE_VERSION < 3
#define TIMER1_A_PIN 5 // PD5
#define TIMER1_B_PIN 4 // PD4
#define TIMER1_ICP_PIN 6 // PD6
#define TIMER1_CLK_PIN 15 // PB1
#define TIMER3_A_PIN 12 // PB6
#define TIMER3_B_PIN 13 // PB7
#define TIMER3_ICP_PIN 11 // PB5
#define TIMER3_CLK_PIN 0 // PD0
// Mighty-1284 - Maniacbug
//
#elif defined(__AVR_ATmega1284P__)
#define TIMER1_A_PIN 12 // PD5
#define TIMER1_B_PIN 13 // PD4
#define TIMER1_ICP_PIN 14 // PD6
#define TIMER1_CLK_PIN 1 // PB1
#define TIMER3_A_PIN 6 // PB6
#define TIMER3_B_PIN 7 // PB7
#define TIMER3_ICP_PIN 5 // PB5
#define TIMER3_CLK_PIN 8 // PD0
#endif
#endif

View File

@ -1,5 +1,4 @@
#include "Arduino.h"
#include "LowLevel.h"
#include "OneWireSlave.h"
// This is the pin that will be used for one-wire data (depending on your arduino model, you are limited to a few choices, because some pins don't have complete interrupt support)

View File

@ -0,0 +1,16 @@
This is a **DS18B20** emulator, i.e. it turns an Arduino Uno into a device roughly equivalent to an actual DS18B20 temperature sensor. Excepted in this sample it doesn't actually sense temperature (because the Arduino lacks the hardware for this), it just returns 42 as if that was the expected answer.
To make it work, you will need to connect your Arduino Uno to a 1-wire master (for example an USB adapter on a computer).
You can then connect:
- a GND pin of your Uno to your 1-wire network ground.
- the pin "2" of your Uno to the data line of your 1-wire network. You may use "3" as well but need to change the code.
You will see 28.000000000002 probe that always return 42 as temperature :
$ cat 28.000000000002/temperature
42
Conversion timing is emulated as well.
If you don't use an Arduino Uno, you may need to adjust which pin you connect as the data line (it needs to have hardware interrupts), and make the corresponding change in the example source code. A few microcontrollers are compatible with the library, check the full list in [the documentation](../../extras/documentation.md).

83
extras/documentation.md Normal file
View File

@ -0,0 +1,83 @@
# OneWireSlave library documentation
This library allows you to emulate existing 1-wire devices with an Arduino, or to create your own protocol. All low-level details are handled by the library, such as reset detection, ROM matching, byte sending and receiving. Look at the demo sketch to see an example.
## Compatible boards
If you have tested the library on another board, please send a pull-request (or just tell me which board) to update this list.
### ATmega328
- Arduino Uno (tested by [neuoy](https://github.com/neuoy))
## Getting started
See example "FakeDS18B20", and the associated [documentation](examples/FakeDS18B20/README.md), for a working use case of the library.
## Library reference
### setReceiveCallback
`void setReceiveCallback(void(*callback)(ReceiveEvent evt, byte data))`
Sets the function that will be called back when an event occurs, such as when a byte is received.
### begin
`void begin(byte* rom, byte pinNumber)`
Starts the library, which will respond to the provided ROM (must be unique on your network) on the specified Arduino pin. The ROM is cloned by the library, so you can discard your buffer immediately if you want.
### write
`bool write(const byte* bytes, short numBytes)`
Writes the specified bytes synchronously. This function blocks until the write operation has finished. Do not call from an interrupt handler! Returns true in case of success, false if an error occurs.
### beginWrite
`void beginWrite(const byte* bytes, short numBytes, void(*complete)(bool error))`
Starts sending the specified bytes. They will be sent in the background, and the buffer must remain valid and unchanged until the write operation has finished or is cancelled. The optional callback is used to notify when the bytes are sent, or if an error occured. Callbacks are executed from interrupts and should be as short as possible. If `bytes` is null or `numBytes` is 0, nothing is sent, which is equivalent to calling `stopWrite`. In any case, calling the write function will cancel the previous write operation if it didn't complete yet.
### setReceiveBitCallback
`void setReceiveBitCallback(void(*callback)(bool bit))`
Sets (or replaces) a function to be called when a bit is received. The byte reception callback is called after that if the received bit was the last of a byte. The callback is executed from interrupts and should be as short as possible. Failure to return quickly can prevent the library from correctly reading the next bit.
### writeBit
`bool writeBit(bool value)`
Writes a single bit synchronously. This function blocks until the bit is sent. Do not call from an interrupt handler! Returns true in case of success, false if an error occurs.
### beginWriteBit
`void beginWriteBit(bool value, bool repeat = false, void(*bitSent)(bool error) = 0)`
Sets a bit that will be sent next time the master asks for one. Optionnaly, the repeat parameter can be set to true to continue sending the same bit each time. In both cases, the send operation can be canceled by calling `stopWrite`.
### stopWrite
`void stopWrite()`
Cancels any pending write operation, started by writeBit or write. If this function is called before the master asked for a bit, then nothing is sent to the master.
### alarmed
`void alarmed(bool value)`
Sets the alarmed state, that is used when the master makes a conditional search of alarmed devices.
### setLogCallback(void(*callback)(const char* message))
`void setLogCallback(void(*callback)(const char* message))`
Sets (or replaces) a function to be called when the library has a message to log, if the functionality is enabled in OneWireSlave.cpp (uncomment line `#define ERROR_MESSAGES`). This is for debugging purposes.
### end
`void end()`
Stops all 1-wire activities, which frees hardware resources for other purposes.
## Notes about the interrupt-based implementation
Since the library is implemented using interrupts, none of its functions will block: you can continue execute your code immediately.
This also means callbacks are called from interrupt handlers, so you must make them very short to not block further communication.
You must also be careful when you explicitely block interrupts, as the 1-wire protocol has very tight timings, especially when writing bytes (which also happens when searching for device ROMs): a delay of 3 microseconds (yes, microseconds, not milliseconds) can be enough for some (quite intolerant) masters to miss a bit.
But if your code only blocks interrupts for reasonably short time, the probability to block exactly at the bad moment is low, so you can easily mitigate the issue by adding CRC checks in your high-level communication protocol, and retrying when an error is detected. This is an important thing to do anyway because 1-wire does not natively perform any error checking (excepted for ROM operations which already contain a CRC byte). Standard 1-wire devices also include CRC checks in their specific protocols.

34
keywords.txt Normal file
View File

@ -0,0 +1,34 @@
#######################################
# Syntax Coloring Map For OneWireSlave
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
ReceiveEvent KEYWORD1
OneWireSlave KEYWORD1
Pin KEYWORD1
OWSlave KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
begin KEYWORD2
end KEYWORD2
setReceiveCallback KEYWORD2
setReceiveBitCallback KEYWORD2
write KEYWORD2
writeBit KEYWORD2
stopWrite KEYWORD2
alarmed KEYWORD2
crc8 KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
RE_Reset LITERAL1
RE_Byte LITERAL1
RE_Error LITERAL1

9
library.properties Normal file
View File

@ -0,0 +1,9 @@
name=OneWireSlave
version=0.1
author=Youen Toupin, aka neuoy
maintainer=Youen Toupin, aka neuoy
sentence=Communicate using the Dallas one-wire protocol, where the Arduino takes the role of a slave.
paragraph=This library allows you to emulate existing 1-wire devices with an Arduino, or to create your own protocol. All low-level details are handled by the library, such as reset detection, ROM matching, byte sending and receiving.
category=Signal Input/Output
url=https://github.com/neuoy/OneWireArduinoSlave
architectures=*

715
src/OneWireSlave.cpp Normal file
View File

@ -0,0 +1,715 @@
#include "OneWireSlave.h"
// uncomment this line to enable sending messages along with errors (but takes more program memory)
//#define ERROR_MESSAGES
#ifdef ERROR_MESSAGES
#define ERROR(msg) error_(msg)
#else
#define ERROR(msg) error_(0)
#endif
namespace
{
const unsigned long ResetMinDuration = 480;
const unsigned long ResetMaxDuration = 900;
const unsigned long PresenceWaitDuration = 15;
const unsigned long PresenceDuration = 200;
const unsigned long ReadBitSamplingTime = 25;
const unsigned long SendBitDuration = 35;
const byte ReceiveCommand = (byte)-1;
void(*timerEvent)() = 0;
}
OneWireSlave OWSlave;
byte OneWireSlave::rom_[8];
byte OneWireSlave::scratchpad_[8];
Pin OneWireSlave::pin_;
unsigned long OneWireSlave::resetStart_;
unsigned long OneWireSlave::lastReset_;
void(*OneWireSlave::receiveBitCallback_)(bool bit, bool error);
void(*OneWireSlave::bitSentCallback_)(bool error);
void(*OneWireSlave::clientReceiveCallback_)(ReceiveEvent evt, byte data);
void(*OneWireSlave::clientReceiveBitCallback_)(bool bit);
byte OneWireSlave::receivingByte_;
byte OneWireSlave::searchRomBytePos_;
byte OneWireSlave::searchRomBitPos_;
bool OneWireSlave::searchRomInverse_;
bool OneWireSlave::resumeCommandFlag_;
bool OneWireSlave::alarmedFlag_;
const byte* OneWireSlave::sendBuffer_;
byte* OneWireSlave::recvBuffer_;
short OneWireSlave::bufferLength_;
byte OneWireSlave::bufferBitPos_;
short OneWireSlave::bufferPos_;
void(*OneWireSlave::receiveBytesCallback_)(bool error);
void(*OneWireSlave::sendBytesCallback_)(bool error);
volatile bool OneWireSlave::waitingSynchronousWriteToComplete_;
volatile bool OneWireSlave::synchronousWriteError_;
bool OneWireSlave::sendingClientBytes_;
bool OneWireSlave::singleBit_;
bool OneWireSlave::singleBitRepeat_;
void(*OneWireSlave::singleBitSentCallback_)(bool error);
void(*OneWireSlave::logCallback_)(const char* message);
ISR(USERTIMER_COMPA_vect) // timer1 interrupt
{
UserTimer_Stop(); // disable clock
void(*event)() = timerEvent;
timerEvent = 0;
event();
}
void OneWireSlave::begin(const byte* rom, byte pinNumber)
{
pin_ = Pin(pinNumber);
resetStart_ = (unsigned long)-1;
lastReset_ = 0;
memcpy(rom_, rom, 7);
rom_[7] = crc8(rom_, 7);
resumeCommandFlag_ = false;
alarmedFlag_ = false;
clientReceiveBitCallback_ = 0;
sendingClientBytes_ = false;
// log("Enabling 1-wire library")
cli(); // disable interrupts
pin_.inputMode();
pin_.writeLow(); // make sure the internal pull-up resistor is disabled
// prepare hardware timer
UserTimer_Init();
// start 1-wire activity
beginWaitReset_();
sei(); // enable interrupts
}
void OneWireSlave::end()
{
// log("Disabling 1-wire library");
cli();
disableTimer_();
pin_.detachInterrupt();
releaseBus_();
sei();
}
bool OneWireSlave::write(const byte* bytes, short numBytes)
{
// TODO: put the arduino to sleep between interrupts to save power?
waitingSynchronousWriteToComplete_ = true;
beginWrite(bytes, numBytes, &OneWireSlave::onSynchronousWriteComplete_);
while (waitingSynchronousWriteToComplete_)
delay(1);
return !synchronousWriteError_;
}
void OneWireSlave::onSynchronousWriteComplete_(bool error)
{
synchronousWriteError_ = error;
waitingSynchronousWriteToComplete_ = false;
}
void OneWireSlave::beginWrite(const byte* bytes, short numBytes, void(*complete)(bool error))
{
cli();
endWrite_(true);
sendingClientBytes_ = true;
beginWriteBytes_(bytes, numBytes, complete == 0 ? noOpCallback_ : complete);
sei();
}
void OneWireSlave::endWrite_(bool error, bool resetInterrupts)
{
if(resetInterrupts)
beginWaitReset_();
if (sendingClientBytes_)
{
sendingClientBytes_ = false;
if (sendBytesCallback_ != 0)
{
void(*callback)(bool error) = sendBytesCallback_;
sendBytesCallback_ = noOpCallback_;
callback(error);
}
}
else if (singleBitSentCallback_ != 0)
{
void(*callback)(bool) = singleBitSentCallback_;
singleBitSentCallback_ = 0;
callback(error);
}
}
bool OneWireSlave::writeBit(bool value)
{
// TODO: put the arduino to sleep between interrupts to save power?
waitingSynchronousWriteToComplete_ = true;
beginWriteBit(value, false, &OneWireSlave::onSynchronousWriteComplete_);
while (waitingSynchronousWriteToComplete_)
delay(1);
return !synchronousWriteError_;
}
void OneWireSlave::beginWriteBit(bool value, bool repeat, void(*bitSent)(bool))
{
cli();
endWrite_(true);
singleBit_ = value;
singleBitRepeat_ = repeat;
singleBitSentCallback_ = bitSent;
beginSendBit_(value, &OneWireSlave::onSingleBitSent_);
sei();
}
void OneWireSlave::onSingleBitSent_(bool error)
{
if (!error && singleBitRepeat_)
{
beginSendBit_(singleBit_, &OneWireSlave::onSingleBitSent_);
}
else
{
beginReceiveBytes_(scratchpad_, 1, &OneWireSlave::notifyClientByteReceived_);
}
if (singleBitSentCallback_ != 0)
{
void(*callback)(bool) = singleBitSentCallback_;
singleBitSentCallback_ = 0;
callback(error);
}
}
void OneWireSlave::stopWrite()
{
beginWrite(0, 0, 0);
}
void OneWireSlave::alarmed(bool value)
{
alarmedFlag_ = value;
}
byte OneWireSlave::crc8(const byte* data, short numBytes)
{
byte crc = 0;
while (numBytes--) {
byte inbyte = *data++;
for (byte i = 8; i; i--) {
byte mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
void OneWireSlave::setTimerEvent_(short delayMicroSeconds, void(*handler)())
{
delayMicroSeconds -= 10; // remove overhead (tuned on Arduino Uno)
short skipTicks = (delayMicroSeconds - 3) / 4; // round the micro seconds delay to a number of ticks to skip (4us per tick, so 4us must skip 0 tick, 8us must skip 1 tick, etc.)
if (skipTicks < 1) skipTicks = 1;
timerEvent = handler;
UserTimer_Run(skipTicks);
}
void OneWireSlave::disableTimer_()
{
UserTimer_Stop();
}
void OneWireSlave::onEnterInterrupt_()
{
}
void OneWireSlave::onLeaveInterrupt_()
{
}
void OneWireSlave::error_(const char* message)
{
if (logCallback_ != 0)
logCallback_(message);
endWrite_(true);
if (clientReceiveCallback_ != 0)
clientReceiveCallback_(RE_Error, 0);
}
void OneWireSlave::pullLow_()
{
pin_.outputMode();
pin_.writeLow();
}
void OneWireSlave::releaseBus_()
{
pin_.inputMode();
}
void OneWireSlave::beginResetDetection_()
{
setTimerEvent_(ResetMinDuration - 50, &OneWireSlave::resetCheck_);
resetStart_ = micros() - 50;
}
void OneWireSlave::beginResetDetectionSendZero_()
{
setTimerEvent_(ResetMinDuration - SendBitDuration - 50, &OneWireSlave::resetCheck_);
resetStart_ = micros() - SendBitDuration - 50;
}
void OneWireSlave::cancelResetDetection_()
{
disableTimer_();
resetStart_ = (unsigned long)-1;
}
void OneWireSlave::resetCheck_()
{
onEnterInterrupt_();
if (!pin_.read())
{
pin_.attachInterrupt(&OneWireSlave::waitReset_, CHANGE);
// log("Reset detected during another operation");
}
onLeaveInterrupt_();
}
void OneWireSlave::beginReceiveBit_(void(*completeCallback)(bool bit, bool error))
{
receiveBitCallback_ = completeCallback;
pin_.attachInterrupt(&OneWireSlave::receive_, FALLING);
}
void OneWireSlave::receive_()
{
onEnterInterrupt_();
pin_.detachInterrupt();
setTimerEvent_(ReadBitSamplingTime, &OneWireSlave::readBit_);
onLeaveInterrupt_();
}
void OneWireSlave::readBit_()
{
onEnterInterrupt_();
bool bit = pin_.read();
if (bit)
cancelResetDetection_();
else
beginResetDetection_();
receiveBitCallback_(bit, false);
//dbgOutput.writeLow();
//dbgOutput.writeHigh();
onLeaveInterrupt_();
}
void OneWireSlave::beginSendBit_(bool bit, void(*completeCallback)(bool error))
{
bitSentCallback_ = completeCallback;
if (bit)
{
pin_.attachInterrupt(&OneWireSlave::sendBitOne_, FALLING);
}
else
{
pin_.attachInterrupt(&OneWireSlave::sendBitZero_, FALLING);
}
}
void OneWireSlave::sendBitOne_()
{
onEnterInterrupt_();
beginResetDetection_();
bitSentCallback_(false);
onLeaveInterrupt_();
}
void OneWireSlave::sendBitZero_()
{
pullLow_(); // this must be executed first because the timing is very tight with some master devices
onEnterInterrupt_();
pin_.detachInterrupt();
setTimerEvent_(SendBitDuration, &OneWireSlave::endSendBitZero_);
onLeaveInterrupt_();
}
void OneWireSlave::endSendBitZero_()
{
onEnterInterrupt_();
releaseBus_();
beginResetDetectionSendZero_();
bitSentCallback_(false);
onLeaveInterrupt_();
}
void OneWireSlave::beginWaitReset_()
{
disableTimer_();
pin_.inputMode();
pin_.attachInterrupt(&OneWireSlave::waitReset_, CHANGE);
resetStart_ = (unsigned int)-1;
}
void OneWireSlave::waitReset_()
{
onEnterInterrupt_();
bool state = pin_.read();
unsigned long now = micros();
if (state)
{
if (resetStart_ == (unsigned int)-1)
{
onLeaveInterrupt_();
return;
}
unsigned long resetDuration = now - resetStart_;
resetStart_ = (unsigned int)-1;
if (resetDuration >= ResetMinDuration)
{
if (resetDuration > ResetMaxDuration)
{
ERROR("Reset too long");
onLeaveInterrupt_();
return;
}
lastReset_ = now;
pin_.detachInterrupt();
unsigned long alreadyElapsedTime = micros() - now;
setTimerEvent_(alreadyElapsedTime < PresenceWaitDuration ? PresenceWaitDuration - alreadyElapsedTime : 0, &OneWireSlave::beginPresence_);
endWrite_(true, false);
if (clientReceiveCallback_ != 0)
clientReceiveCallback_(RE_Reset, 0);
}
}
else
{
resetStart_ = now;
}
onLeaveInterrupt_();
}
void OneWireSlave::beginPresence_()
{
pullLow_();
setTimerEvent_(PresenceDuration, &OneWireSlave::endPresence_);
}
void OneWireSlave::endPresence_()
{
releaseBus_();
beginWaitCommand_();
}
void OneWireSlave::beginWaitCommand_()
{
bufferPos_ = ReceiveCommand;
beginReceive_();
}
void OneWireSlave::beginReceive_()
{
receivingByte_ = 0;
bufferBitPos_ = 0;
beginReceiveBit_(&OneWireSlave::onBitReceived_);
}
void OneWireSlave::onBitReceived_(bool bit, bool error)
{
if (error)
{
ERROR("Invalid bit");
if (bufferPos_ >= 0)
receiveBytesCallback_(true);
return;
}
receivingByte_ |= ((bit ? 1 : 0) << bufferBitPos_);
++bufferBitPos_;
if (clientReceiveBitCallback_ != 0 && bufferPos_ != ReceiveCommand)
clientReceiveBitCallback_(bit);
if (bufferBitPos_ == 8)
{
// log("received byte", (long)receivingByte_);
if (bufferPos_ == ReceiveCommand)
{
bufferPos_ = 0;
switch (receivingByte_)
{
case 0xF0: // SEARCH ROM
resumeCommandFlag_ = false;
beginSearchRom_();
return;
case 0xEC: // CONDITIONAL SEARCH ROM
resumeCommandFlag_ = false;
if (alarmedFlag_)
{
beginSearchRom_();
}
else
{
beginWaitReset_();
}
return;
case 0x33: // READ ROM
resumeCommandFlag_ = false;
beginWriteBytes_(rom_, 8, &OneWireSlave::noOpCallback_);
return;
case 0x55: // MATCH ROM
resumeCommandFlag_ = false;
beginReceiveBytes_(scratchpad_, 8, &OneWireSlave::matchRomBytesReceived_);
return;
case 0xCC: // SKIP ROM
resumeCommandFlag_ = false;
beginReceiveBytes_(scratchpad_, 1, &OneWireSlave::notifyClientByteReceived_);
return;
case 0xA5: // RESUME
if (resumeCommandFlag_)
{
beginReceiveBytes_(scratchpad_, 1, &OneWireSlave::notifyClientByteReceived_);
}
else
{
beginWaitReset_();
}
return;
default:
ERROR("Unknown command");
return;
}
}
else
{
recvBuffer_[bufferPos_++] = receivingByte_;
receivingByte_ = 0;
bufferBitPos_ = 0;
if (bufferPos_ == bufferLength_)
{
beginWaitReset_();
receiveBytesCallback_(false);
return;
}
}
}
beginReceiveBit_(&OneWireSlave::onBitReceived_);
}
void OneWireSlave::beginSearchRom_()
{
searchRomBytePos_ = 0;
searchRomBitPos_ = 0;
searchRomInverse_ = false;
beginSearchRomSendBit_();
}
void OneWireSlave::beginSearchRomSendBit_()
{
byte currentByte = rom_[searchRomBytePos_];
bool currentBit = bitRead(currentByte, searchRomBitPos_);
bool bitToSend = searchRomInverse_ ? !currentBit : currentBit;
beginSendBit_(bitToSend, &OneWireSlave::continueSearchRom_);
}
void OneWireSlave::continueSearchRom_(bool error)
{
if (error)
{
ERROR("Failed to send bit");
return;
}
searchRomInverse_ = !searchRomInverse_;
if (searchRomInverse_)
{
beginSearchRomSendBit_();
}
else
{
beginReceiveBit_(&OneWireSlave::searchRomOnBitReceived_);
}
}
void OneWireSlave::searchRomOnBitReceived_(bool bit, bool error)
{
if (error)
{
ERROR("Bit read error during ROM search");
return;
}
byte currentByte = rom_[searchRomBytePos_];
bool currentBit = bitRead(currentByte, searchRomBitPos_);
if (bit == currentBit)
{
++searchRomBitPos_;
if (searchRomBitPos_ == 8)
{
searchRomBitPos_ = 0;
++searchRomBytePos_;
}
if (searchRomBytePos_ == 8)
{
// log("ROM sent entirely");
beginWaitReset_();
}
else
{
beginSearchRomSendBit_();
}
}
else
{
// log("Leaving ROM search");
beginWaitReset_();
}
}
void OneWireSlave::beginWriteBytes_(const byte* data, short numBytes, void(*complete)(bool error))
{
sendBuffer_ = data;
bufferLength_ = numBytes;
bufferPos_ = 0;
bufferBitPos_ = 0;
sendBytesCallback_ = complete;
if (sendBuffer_ != 0 && bufferLength_ > 0)
{
bool bit = bitRead(sendBuffer_[0], 0);
beginSendBit_(bit, &OneWireSlave::bitSent_);
}
else
{
endWrite_(true);
beginReceiveBytes_(scratchpad_, 1, &OneWireSlave::notifyClientByteReceived_);
}
}
void OneWireSlave::bitSent_(bool error)
{
if (error)
{
ERROR("error sending a bit");
sendBytesCallback_(true);
return;
}
++bufferBitPos_;
if (bufferBitPos_ == 8)
{
bufferBitPos_ = 0;
++bufferPos_;
}
if (bufferPos_ == bufferLength_)
{
endWrite_(false);
sendBytesCallback_(false);
return;
}
bool bit = bitRead(sendBuffer_[bufferPos_], bufferBitPos_);
beginSendBit_(bit, &OneWireSlave::bitSent_);
}
void OneWireSlave::beginReceiveBytes_(byte* buffer, short numBytes, void(*complete)(bool error))
{
recvBuffer_ = buffer;
bufferLength_ = numBytes;
bufferPos_ = 0;
receiveBytesCallback_ = complete;
beginReceive_();
}
void OneWireSlave::noOpCallback_(bool error)
{
if (error)
ERROR("error during an internal 1-wire operation");
}
void OneWireSlave::matchRomBytesReceived_(bool error)
{
if (error)
{
resumeCommandFlag_ = false;
ERROR("error receiving match rom bytes");
return;
}
if (memcmp(rom_, scratchpad_, 8) == 0)
{
// log("ROM matched");
resumeCommandFlag_ = true;
beginReceiveBytes_(scratchpad_, 1, &OneWireSlave::notifyClientByteReceived_);
}
else
{
// log("ROM not matched");
resumeCommandFlag_ = false;
beginWaitReset_();
}
}
void OneWireSlave::notifyClientByteReceived_(bool error)
{
if (error)
{
if (clientReceiveCallback_ != 0)
clientReceiveCallback_(RE_Error, 0);
ERROR("error receiving custom bytes");
return;
}
beginReceiveBytes_(scratchpad_, 1, &OneWireSlave::notifyClientByteReceived_);
if (clientReceiveCallback_ != 0)
clientReceiveCallback_(RE_Byte, scratchpad_[0]);
}

148
src/OneWireSlave.h Normal file
View File

@ -0,0 +1,148 @@
#ifndef _OneWireSlave_h_
#define _OneWireSlave_h_
#include "Arduino.h"
#include "utility/LowLevel.h"
class OneWireSlave
{
public:
enum ReceiveEvent
{
RE_Reset, //!< The master has sent a general reset
RE_Byte, //!< The master just sent a byte of data
RE_Error //!< A communication error happened (such as a timeout) ; the library will stop all 1-wire activities until the next reset
};
//! Starts listening for the 1-wire master, on the specified pin, as a virtual slave device identified by the specified ROM (7 bytes, starting from the family code, CRC will be computed internally). Reset, Presence, SearchRom and MatchRom are handled automatically. The library will use the external interrupt on the specified pin (note that this is usually not possible with all pins, depending on the board), as well as one hardware timer. Blocking interrupts (either by disabling them explicitely with sei/cli, or by spending time in another interrupt) can lead to malfunction of the library, due to tight timing for some 1-wire operations.
void begin(const byte* rom, byte pinNumber);
//! Stops all 1-wire activities, which frees hardware resources for other purposes.
void end();
//! Sets (or replaces) a function to be called when something is received. The callback is executed from interrupts and should be as short as possible. Failure to return quickly can prevent the library from correctly reading the next byte.
void setReceiveCallback(void(*callback)(ReceiveEvent evt, byte data)) { clientReceiveCallback_ = callback; }
//! Sets (or replaces) a function to be called when a bit is received. The byte reception callback is called after that if the received bit was the last of a byte. The callback is executed from interrupts and should be as short as possible. Failure to return quickly can prevent the library from correctly reading the next bit.
void setReceiveBitCallback(void(*callback)(bool bit)) { clientReceiveBitCallback_ = callback; }
//! Sets (or replaces) a function to be called when the library has a message to log, if the functionality is enabled in OneWireSlave.cpp. This is for debugging purposes.
void setLogCallback(void(*callback)(const char* message)) { logCallback_ = callback; }
//! Writes the specified bytes synchronously. This function blocks until the write operation has finished. Do not call from an interrupt handler! Returns true in case of success, false if an error occurs.
bool write(const byte* bytes, short numBytes);
//! Starts sending the specified bytes. They will be sent in the background, and the buffer must remain valid and unchanged until the write operation has finished or is cancelled. The optional callback is used to notify when the bytes are sent, or if an error occured. Callbacks are executed from interrupts and should be as short as possible. If bytes is null or numBytes is 0, nothing is sent, which is equivalent to calling stopWrite. In any case, calling the write function will cancel the previous write operation if it didn't complete yet.
void beginWrite(const byte* bytes, short numBytes, void(*complete)(bool error));
//! Writes a single bit synchronously. This function blocks until the bit is sent. Do not call from an interrupt handler! Returns true in case of success, false if an error occurs.
bool writeBit(bool value);
//! Sets a bit that will be sent next time the master asks for one. Optionnaly, the repeat parameter can be set to true to continue sending the same bit each time. In both cases, the send operation can be canceled by calling stopWrite.
void beginWriteBit(bool value, bool repeat = false, void(*bitSent)(bool error) = 0);
//! Cancels any pending write operation, started by writeBit or write. If this function is called before the master asked for a bit, then nothing is sent to the master.
void stopWrite();
//! Sets the alarmed state, that is used when the master makes a conditional search of alarmed devices.
void alarmed(bool value);
static byte crc8(const byte* data, short numBytes);
private:
static void setTimerEvent_(short delayMicroSeconds, void(*handler)());
static void disableTimer_();
static void onEnterInterrupt_();
static void onLeaveInterrupt_();
static void error_(const char* message);
static void pullLow_();
static void releaseBus_();
static void beginReceiveBit_(void(*completeCallback)(bool bit, bool error));
static void beginSendBit_(bool bit, void(*completeCallback)(bool error));
static void beginResetDetection_();
static void beginResetDetectionSendZero_();
static void cancelResetDetection_();
static void beginWaitReset_();
static void beginWaitCommand_();
static void beginReceive_();
static void onBitReceived_(bool bit, bool error);
static void beginSearchRom_();
static void beginSearchRomSendBit_();
static void continueSearchRom_(bool error);
static void searchRomOnBitReceived_(bool bit, bool error);
static void beginWriteBytes_(const byte* data, short numBytes, void(*complete)(bool error));
static void beginReceiveBytes_(byte* buffer, short numBytes, void(*complete)(bool error));
static void endWrite_(bool error, bool resetInterrupts = true);
static void onSynchronousWriteComplete_(bool error);
static void noOpCallback_(bool error);
static void matchRomBytesReceived_(bool error);
static void notifyClientByteReceived_(bool error);
static void bitSent_(bool error);
// interrupt handlers
static void waitReset_();
static void beginPresence_();
static void endPresence_();
static void receive_();
static void readBit_();
static void sendBitOne_();
static void sendBitZero_();
static void endSendBitZero_();
static void resetCheck_();
private:
static byte rom_[8];
static byte scratchpad_[8];
static Pin pin_;
static unsigned long resetStart_;
static unsigned long lastReset_;
static void(*receiveBitCallback_)(bool bit, bool error);
static void(*bitSentCallback_)(bool error);
static byte receivingByte_;
static byte searchRomBytePos_;
static byte searchRomBitPos_;
static bool searchRomInverse_;
static bool resumeCommandFlag_;
static bool alarmedFlag_;
static const byte* sendBuffer_;
static byte* recvBuffer_;
static short bufferLength_;
static short bufferPos_;
static byte bufferBitPos_;
static void(*receiveBytesCallback_)(bool error);
static void(*sendBytesCallback_)(bool error);
static volatile bool waitingSynchronousWriteToComplete_;
static volatile bool synchronousWriteError_;
static bool sendingClientBytes_;
static bool singleBit_;
static bool singleBitRepeat_;
static void (*singleBitSentCallback_)(bool error);
static void onSingleBitSent_(bool error);
static void(*clientReceiveCallback_)(ReceiveEvent evt, byte data);
static void(*clientReceiveBitCallback_)(bool bit);
static void(*logCallback_)(const char* message);
};
extern OneWireSlave OWSlave;
#endif

163
src/utility/LowLevel.h Normal file
View File

@ -0,0 +1,163 @@
#ifndef _LowLevel_h
#define _LowLevel_h
#include <inttypes.h>
#ifdef VS_INTELLISENSE
#define __attribute__(...)
#define digitalPinToPort(pin) 0
#define digitalPinToBitMask(pin) 0
#define portInputRegister(arg1) 0
#endif
#if ARDUINO >= 100
#include "Arduino.h" // for delayMicroseconds, digitalPinToBitMask, etc
#else
#include "WProgram.h" // for delayMicroseconds
#include "pins_arduino.h" // for digitalPinToBitMask, etc
#endif
#if defined(__AVR__)
#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM asm("r30")
#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask))
#if defined (__AVR_ATtiny85__)
#define CLEARINTERRUPT GIFR |= (1 << INTF0)
#include "UserTimer.h" //ATtiny-support based on TinyCore1 Arduino-core for ATtiny at http://github.com/Coding-Badly/TinyCore1.git
__attribute__((always_inline)) static inline void UserTimer_Init( void )
{
UserTimer_SetToPowerup();
UserTimer_SetWaveformGenerationMode(UserTimer_(CTC_OCR));
}
__attribute__((always_inline)) static inline void UserTimer_Run(short skipTicks)
{
UserTimer_SetCount(0);
UserTimer_SetOutputCompareMatchAndClear(skipTicks);
UserTimer_ClockSelect(UserTimer_(Prescale_Value_64));
}
#define UserTimer_Stop() UserTimer_ClockSelect(UserTimer_(Stopped))
#elif defined (__AVR_ATmega328P__)
#define CLEARINTERRUPT EIFR |= (1 << INTF0)
#define USERTIMER_COMPA_vect TIMER1_COMPA_vect
__attribute__((always_inline)) static inline void UserTimer_Init( void )
{
TCCR1A = 0;
TCCR1B = 0;
// enable timer compare interrupt
TIMSK1 |= (1 << OCIE1A);
}
__attribute__((always_inline)) static inline void UserTimer_Run(short skipTicks)
{
TCNT1 = 0;
OCR1A = skipTicks;
// turn on CTC mode with 64 prescaler
TCCR1B = (1 << WGM12) | (1 << CS11) | (1 << CS10);
}
#define UserTimer_Stop() TCCR1B = 0
#endif
#elif defined(__MK20DX128__) || defined(__MK20DX256__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (1)
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (*((base)+512))
#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0)
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1)
#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1)
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1)
#elif defined(__SAM3X8E__)
// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due.
// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268
// If you have trouble with OneWire on Arduino Due, please check the
// status of delayMicroseconds() before reporting a bug in OneWire!
#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask))
#ifndef PROGMEM
#define PROGMEM
#endif
#ifndef pgm_read_byte
#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
#endif
#elif defined(__PIC32MX__)
#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10
#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08
#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04
#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24
#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28
#else
#error "Please define I/O register types here"
#endif
class Pin
{
private:
volatile IO_REG_TYPE *reg_;
IO_REG_TYPE mask_;
byte interruptNumber_;
byte pinNumber_;
public:
Pin()
: mask_(0)
, reg_(0)
, interruptNumber_((byte)-1)
, pinNumber_(255)
{ }
Pin(uint8_t pin)
{
pinNumber_ = pin;
mask_ = PIN_TO_BITMASK(pin);
reg_ = PIN_TO_BASEREG(pin);
switch (pin)
{
case 2: interruptNumber_ = 0; break;
case 3: interruptNumber_ = 1; break;
default: interruptNumber_ = (byte)-1;
}
}
inline byte getPinNumber() { return pinNumber_; }
inline void inputMode() { DIRECT_MODE_INPUT(reg_, mask_); }
inline void outputMode() { DIRECT_MODE_OUTPUT(reg_, mask_); }
inline bool read() { return DIRECT_READ(reg_, mask_) == 1; }
inline void writeLow() { DIRECT_WRITE_LOW(reg_, mask_); }
inline void writeHigh() { DIRECT_WRITE_HIGH(reg_, mask_); }
inline void write(bool value) { if (value) writeHigh(); else writeLow(); }
inline void attachInterrupt(void (*handler)(), int mode)
{
CLEARINTERRUPT; // clear any pending interrupt (we want to call the handler only for interrupts happening after it is attached)
::attachInterrupt(interruptNumber_, handler, mode);
}
inline void detachInterrupt() { ::detachInterrupt(interruptNumber_); }
};
#endif