Browse Source

Upload files to ''

master
IanF 5 years ago
parent
commit
1a0eda0d59
  1. 193
      FakeD2413.ino
  2. 190
      LowLevel.h
  3. 715
      OneWireSlave.cpp
  4. 148
      OneWireSlave.h
  5. 21
      comptime.h

193
FakeD2413.ino

@ -0,0 +1,193 @@
/* Ian Fleet 2018
All files, software, schematics and designs are provided as-is with no warranty.
All files, software, schematics and designs are for experimental/hobby use.
Under no circumstances should any part be used for critical systems where safety,
life or property depends upon it. You are responsible for all use.
You are free to use, modify, derive or otherwise extend for your own purposes
*/
// This example emulates a DS2413 device on an Arduino UNO
// note : physical DS2413 devices found in 2018 are often clones with
// a device code different to the Maxim datasheet
#include "Arduino.h"
#include "OneWireSlave.h"
#include "comptime.h"
// This is the pin that will be used for one-wire data
// On Arduino Uno, you can use pin 2 or pin 3
Pin oneWireData(2);
Pin led(13); // builtin led
// This sample emulates a DS2413 device , so we start by defining the available commands
const byte DS2413_FAMILY_ID = 0x3A; // Maxim DS2413 device code
const byte CLONE_FAMILY_ID = 0x85; // Clone device code
const byte DS2413_ACCESS_READ = 0xF5;
const byte DS2413_ACCESS_WRITE = 0x5A;
const byte DS2413_ACK_SUCCESS = 0xAA;
// generate unique id
const byte owROM[7] = { DS2413_FAMILY_ID, SERIAL_NUMBER};
// will be calculated in begin:---------------^^^^
// or use fixed id - make sure it doesn't conflict with another device
//const byte owROM[7] = { 0x3A, 0x00, 0x00, 0x00, 0x00, 0x11, 0x22 };
#define PIOA 4 // DS2413 PIO PINS on the UNO
#define PIOB 5 //
uint8_t latch = 0;
uint8_t statusbyte1 = 0;
uint8_t statusbyte2 = 0;
enum DeviceState
{
DS_WaitingReset,
DS_WaitingCommand,
DS_WaitingStatus1,
DS_WaitingStatus2,
};
volatile DeviceState state = DS_WaitingReset;
// scratchpad
volatile byte scratchpad[2];
volatile byte response[2];
// This function will be called each time the OneWire library has an event to notify (reset, error, byte received)
void owReceive(OneWireSlave::ReceiveEvent evt, byte data);
//////////////////////////////////////////
void setup()
{
led.outputMode();
Serial.begin(115200);
// Setup the OneWire library
OWSlave.setReceiveCallback(&owReceive);
OWSlave.begin(owROM, oneWireData.getPinNumber());
}
//////////////////////////////////////////
void loop()
{
delay(1000);
cli();//disable interrupts
// Be sure to not block interrupts for too long, OneWire timing is very tight for some operations. 1 or 2 microseconds (yes, microseconds, not milliseconds) can be too much depending on your master controller, but then it's equally unlikely that you block exactly at the moment where it matters.
// This can be mitigated by using error checking and retry in your high-level communication protocol. A good thing to do anyway.
sei();//enable interrupts
led.writeLow(); // flash the led
delay(1000);
led.writeHigh();
}
//////////////////////////////////////////
static uint8_t getstatus() {
uint8_t c = 0;
if (latch & 0x01) c |= 0x02;
if (digitalRead(PIOA)) c |= 0x01;
if (latch & 0x02) c |= 0x08;
if (digitalRead(PIOB)) c |= 0x04;
uint8_t x = (~c) << 4;
return x + c;
}
//////////////////////////////////////////
static void port(int PIO, bool stat) {
if (stat) {
digitalWrite(PIO, HIGH);
pinMode(PIO, INPUT);
} else {
pinMode(PIO, OUTPUT);
digitalWrite(PIO, LOW);
}
}
//////////////////////////////////////////
static void set(uint8_t val) {
latch = val;
port(PIOA, latch & 1);
port(PIOB, latch & 2);
// TODO store latch value for recovery at startup
}
//////////////////////////////////////////
void owReceive(OneWireSlave::ReceiveEvent evt, byte data)
{
switch (evt)
{
case OneWireSlave::RE_Byte:
switch (state)
{
case DS_WaitingCommand:
switch (data) // on command byte
{
case DS2413_ACCESS_WRITE:
state = DS_WaitingStatus1; // wait for status byte 1
break;
case DS2413_ACCESS_READ:
state = DS_WaitingReset;
scratchpad[0] = getstatus(); //return status in DS2413 format
OWSlave.beginWrite((const byte*)scratchpad, 1, 0);
break;
default:
//TODO : report invalid commands
break;
} // end switch (data) command
break;
case DS_WaitingStatus1:
statusbyte1 = data;
state = DS_WaitingStatus2; // wait for status byte 2
break;
case DS_WaitingStatus2:
statusbyte2 = data;
if (statusbyte1 != ~statusbyte2) { // is DS2413 status data valid?
set(statusbyte1);
response[0] = DS2413_ACK_SUCCESS;
} else {
response[0] = 0x11; // mark error - real DS2413 don't do this
}
response[1] = getstatus(); // DS2413 expects an update of new status
OWSlave.beginWrite((const byte*)response, 2, 0);
state = DS_WaitingCommand;
break;
} // end switch state
break;
case OneWireSlave::RE_Reset:
state = DS_WaitingCommand;
break;
case OneWireSlave::RE_Error:
state = DS_WaitingReset;
break;
} // end switch evt
}

190
LowLevel.h

@ -0,0 +1,190 @@
#ifndef _LowLevel_h
#define _LowLevel_h
#include <inttypes.h>
#ifdef VS_INTELLISENSE
#define __attribute__(...)
#define digitalPinToPort(pin) 0
#define digitalPinToBitMask(pin) 0
#define portInputRegister(arg1) 0
#endif
#if ARDUINO >= 100
#include "Arduino.h" // for delayMicroseconds, digitalPinToBitMask, etc
#else
#include "WProgram.h" // for delayMicroseconds
#include "pins_arduino.h" // for digitalPinToBitMask, etc
#endif
#if defined(__AVR__)
#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM asm("r30")
#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask))
#if defined (__AVR_ATtiny85__)
#define CLEARINTERRUPT GIFR |= (1 << INTF0)
#include "UserTimer.h" //ATtiny-support based on TinyCore1 Arduino-core for ATtiny at http://github.com/Coding-Badly/TinyCore1.git
__attribute__((always_inline)) static inline void UserTimer_Init( void )
{
UserTimer_SetToPowerup();
UserTimer_SetWaveformGenerationMode(UserTimer_(CTC_OCR));
}
__attribute__((always_inline)) static inline void UserTimer_Run(short skipTicks)
{
UserTimer_SetCount(0);
UserTimer_SetOutputCompareMatchAndClear(skipTicks);
UserTimer_ClockSelect(UserTimer_(Prescale_Value_64));
}
#define UserTimer_Stop() UserTimer_ClockSelect(UserTimer_(Stopped))
#elif defined (__AVR_ATmega328P__)
#define CLEARINTERRUPT EIFR |= (1 << INTF0)
#define USERTIMER_COMPA_vect TIMER1_COMPA_vect
__attribute__((always_inline)) static inline void UserTimer_Init( void )
{
TCCR1A = 0;
TCCR1B = 0;
// enable timer compare interrupt
TIMSK1 |= (1 << OCIE1A);
}
__attribute__((always_inline)) static inline void UserTimer_Run(short skipTicks)
{
TCNT1 = 0;
OCR1A = skipTicks;
// turn on CTC mode with 64 prescaler
TCCR1B = (1 << WGM12) | (1 << CS11) | (1 << CS10);
}
#define UserTimer_Stop() TCCR1B = 0
#endif
#elif defined(__MK20DX128__) || defined(__MK20DX256__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (1)
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (*((base)+512))
#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0)
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1)
#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1)
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1)
#elif defined(__SAM3X8E__)
// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due.
// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268
// If you have trouble with OneWire on Arduino Due, please check the
// status of delayMicroseconds() before reporting a bug in OneWire!
#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask))
#ifndef PROGMEM
#define PROGMEM
#endif
#ifndef pgm_read_byte
#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
#endif
#elif defined(__PIC32MX__)
#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10
#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08
#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04
#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24
#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28
#else
#error "Please define I/O register types here"
#endif
class Pin
{
private:
volatile IO_REG_TYPE *reg_;
IO_REG_TYPE mask_;
byte interruptNumber_;
byte pinNumber_;
public:
Pin()
: mask_(0)
, reg_(0)
, interruptNumber_((byte) - 1)
, pinNumber_(255)
{ }
Pin(uint8_t pin)
{
pinNumber_ = pin;
mask_ = PIN_TO_BITMASK(pin);
reg_ = PIN_TO_BASEREG(pin);
int x = reg_;
Serial.print(" Pin:");
Serial.print(pin);
Serial.print(" mask:");
Serial.print(mask_);
Serial.print(" reg:");
Serial.println(x);
switch (pin)
{
case 2: interruptNumber_ = 0; break;
case 3: interruptNumber_ = 1; break;
default: interruptNumber_ = (byte) - 1;
}
}
inline byte getPinNumber() {
return pinNumber_;
}
inline void inputMode() {
DIRECT_MODE_INPUT(reg_, mask_);
}
inline void outputMode() {
DIRECT_MODE_OUTPUT(reg_, mask_);
}
inline bool read() {
return DIRECT_READ(reg_, mask_) == 1;
}
inline void writeLow() {
DIRECT_WRITE_LOW(reg_, mask_);
}
inline void writeHigh() {
DIRECT_WRITE_HIGH(reg_, mask_);
}
inline void write(bool value) {
if (value) writeHigh();
else writeLow();
}
inline void attachInterrupt(void (*handler)(), int mode)
{
//Serial.print(" handler:");
//int x = handler;
//Serial.println(x);
CLEARINTERRUPT; // clear any pending interrupt (we want to call the handler only for interrupts happening after it is attached)
::attachInterrupt(interruptNumber_, handler, mode);
}
inline void detachInterrupt() {
::detachInterrupt(interruptNumber_);
}
};
#endif

715
OneWireSlave.cpp

@ -0,0 +1,715 @@
#include "OneWireSlave.h"
// uncomment this line to enable sending messages along with errors (but takes more program memory)
//#define ERROR_MESSAGES
#ifdef ERROR_MESSAGES
#define ERROR(msg) error_(msg)
#else
#define ERROR(msg) error_(0)
#endif
namespace
{
const unsigned long ResetMinDuration = 480;
const unsigned long ResetMaxDuration = 900;
const unsigned long PresenceWaitDuration = 15;
const unsigned long PresenceDuration = 200;
const unsigned long ReadBitSamplingTime = 25;
const unsigned long SendBitDuration = 35;
const byte ReceiveCommand = (byte)-1;
void(*timerEvent)() = 0;
}
OneWireSlave OWSlave;
byte OneWireSlave::rom_[8];
byte OneWireSlave::scratchpad_[8];
Pin OneWireSlave::pin_;
unsigned long OneWireSlave::resetStart_;
unsigned long OneWireSlave::lastReset_;
void(*OneWireSlave::receiveBitCallback_)(bool bit, bool error);
void(*OneWireSlave::bitSentCallback_)(bool error);
void(*OneWireSlave::clientReceiveCallback_)(ReceiveEvent evt, byte data);
void(*OneWireSlave::clientReceiveBitCallback_)(bool bit);
byte OneWireSlave::receivingByte_;
byte OneWireSlave::searchRomBytePos_;
byte OneWireSlave::searchRomBitPos_;
bool OneWireSlave::searchRomInverse_;
bool OneWireSlave::resumeCommandFlag_;
bool OneWireSlave::alarmedFlag_;
const byte* OneWireSlave::sendBuffer_;
byte* OneWireSlave::recvBuffer_;
short OneWireSlave::bufferLength_;
byte OneWireSlave::bufferBitPos_;
short OneWireSlave::bufferPos_;
void(*OneWireSlave::receiveBytesCallback_)(bool error);
void(*OneWireSlave::sendBytesCallback_)(bool error);
volatile bool OneWireSlave::waitingSynchronousWriteToComplete_;
volatile bool OneWireSlave::synchronousWriteError_;
bool OneWireSlave::sendingClientBytes_;
bool OneWireSlave::singleBit_;
bool OneWireSlave::singleBitRepeat_;
void(*OneWireSlave::singleBitSentCallback_)(bool error);
void(*OneWireSlave::logCallback_)(const char* message);
ISR(USERTIMER_COMPA_vect) // timer1 interrupt
{
UserTimer_Stop(); // disable clock
void(*event)() = timerEvent;
timerEvent = 0;
event();
}
void OneWireSlave::begin(const byte* rom, byte pinNumber)
{
pin_ = Pin(pinNumber);
resetStart_ = (unsigned long)-1;
lastReset_ = 0;
memcpy(rom_, rom, 7);
rom_[7] = crc8(rom_, 7);
resumeCommandFlag_ = false;
alarmedFlag_ = false;
clientReceiveBitCallback_ = 0;
sendingClientBytes_ = false;
// log("Enabling 1-wire library")
cli(); // disable interrupts
pin_.inputMode();
pin_.writeLow(); // make sure the internal pull-up resistor is disabled
// prepare hardware timer
UserTimer_Init();
// start 1-wire activity
beginWaitReset_();
sei(); // enable interrupts
}
void OneWireSlave::end()
{
// log("Disabling 1-wire library");
cli();
disableTimer_();
pin_.detachInterrupt();
releaseBus_();
sei();
}
bool OneWireSlave::write(const byte* bytes, short numBytes)
{
// TODO: put the arduino to sleep between interrupts to save power?
waitingSynchronousWriteToComplete_ = true;
beginWrite(bytes, numBytes, &OneWireSlave::onSynchronousWriteComplete_);
while (waitingSynchronousWriteToComplete_)
delay(1);
return !synchronousWriteError_;
}
void OneWireSlave::onSynchronousWriteComplete_(bool error)
{
synchronousWriteError_ = error;
waitingSynchronousWriteToComplete_ = false;
}
void OneWireSlave::beginWrite(const byte* bytes, short numBytes, void(*complete)(bool error))
{
cli();
endWrite_(true);
sendingClientBytes_ = true;
beginWriteBytes_(bytes, numBytes, complete == 0 ? noOpCallback_ : complete);
sei();
}
void OneWireSlave::endWrite_(bool error, bool resetInterrupts)
{
if(resetInterrupts)
beginWaitReset_();
if (sendingClientBytes_)
{
sendingClientBytes_ = false;
if (sendBytesCallback_ != 0)
{
void(*callback)(bool error) = sendBytesCallback_;
sendBytesCallback_ = noOpCallback_;
callback(error);
}
}
else if (singleBitSentCallback_ != 0)
{
void(*callback)(bool) = singleBitSentCallback_;
singleBitSentCallback_ = 0;
callback(error);
}
}
bool OneWireSlave::writeBit(bool value)
{
// TODO: put the arduino to sleep between interrupts to save power?
waitingSynchronousWriteToComplete_ = true;
beginWriteBit(value, false, &OneWireSlave::onSynchronousWriteComplete_);
while (waitingSynchronousWriteToComplete_)
delay(1);
return !synchronousWriteError_;
}
void OneWireSlave::beginWriteBit(bool value, bool repeat, void(*bitSent)(bool))
{
cli();
endWrite_(true);
singleBit_ = value;
singleBitRepeat_ = repeat;
singleBitSentCallback_ = bitSent;
beginSendBit_(value, &OneWireSlave::onSingleBitSent_);
sei();
}
void OneWireSlave::onSingleBitSent_(bool error)
{
if (!error && singleBitRepeat_)
{
beginSendBit_(singleBit_, &OneWireSlave::onSingleBitSent_);
}
else
{
beginReceiveBytes_(scratchpad_, 1, &OneWireSlave::notifyClientByteReceived_);
}
if (singleBitSentCallback_ != 0)
{
void(*callback)(bool) = singleBitSentCallback_;
singleBitSentCallback_ = 0;
callback(error);
}
}
void OneWireSlave::stopWrite()
{
beginWrite(0, 0, 0);
}
void OneWireSlave::alarmed(bool value)
{
alarmedFlag_ = value;
}
byte OneWireSlave::crc8(const byte* data, short numBytes)
{
byte crc = 0;
while (numBytes--) {
byte inbyte = *data++;
for (byte i = 8; i; i--) {
byte mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
void OneWireSlave::setTimerEvent_(short delayMicroSeconds, void(*handler)())
{
delayMicroSeconds -= 10; // remove overhead (tuned on Arduino Uno)
short skipTicks = (delayMicroSeconds - 3) / 4; // round the micro seconds delay to a number of ticks to skip (4us per tick, so 4us must skip 0 tick, 8us must skip 1 tick, etc.)
if (skipTicks < 1) skipTicks = 1;
timerEvent = handler;
UserTimer_Run(skipTicks);
}
void OneWireSlave::disableTimer_()
{
UserTimer_Stop();
}
void OneWireSlave::onEnterInterrupt_()
{
}
void OneWireSlave::onLeaveInterrupt_()
{
}
void OneWireSlave::error_(const char* message)
{
if (logCallback_ != 0)
logCallback_(message);
endWrite_(true);
if (clientReceiveCallback_ != 0)
clientReceiveCallback_(RE_Error, 0);
}
void OneWireSlave::pullLow_()
{
pin_.outputMode();
pin_.writeLow();
}
void OneWireSlave::releaseBus_()
{
pin_.inputMode();
}
void OneWireSlave::beginResetDetection_()
{
setTimerEvent_(ResetMinDuration - 50, &OneWireSlave::resetCheck_);
resetStart_ = micros() - 50;
}
void OneWireSlave::beginResetDetectionSendZero_()
{
setTimerEvent_(ResetMinDuration - SendBitDuration - 50, &OneWireSlave::resetCheck_);
resetStart_ = micros() - SendBitDuration - 50;
}
void OneWireSlave::cancelResetDetection_()
{
disableTimer_();
resetStart_ = (unsigned long)-1;
}
void OneWireSlave::resetCheck_()
{
onEnterInterrupt_();
if (!pin_.read())
{
pin_.attachInterrupt(&OneWireSlave::waitReset_, CHANGE);
// log("Reset detected during another operation");
}
onLeaveInterrupt_();
}
void OneWireSlave::beginReceiveBit_(void(*completeCallback)(bool bit, bool error))
{
receiveBitCallback_ = completeCallback;
pin_.attachInterrupt(&OneWireSlave::receive_, FALLING);
}
void OneWireSlave::receive_()
{
onEnterInterrupt_();
pin_.detachInterrupt();
setTimerEvent_(ReadBitSamplingTime, &OneWireSlave::readBit_);
onLeaveInterrupt_();
}
void OneWireSlave::readBit_()
{
onEnterInterrupt_();
bool bit = pin_.read();
if (bit)
cancelResetDetection_();
else
beginResetDetection_();
receiveBitCallback_(bit, false);
//dbgOutput.writeLow();
//dbgOutput.writeHigh();
onLeaveInterrupt_();
}
void OneWireSlave::beginSendBit_(bool bit, void(*completeCallback)(bool error))
{
bitSentCallback_ = completeCallback;
if (bit)
{
pin_.attachInterrupt(&OneWireSlave::sendBitOne_, FALLING);
}
else
{
pin_.attachInterrupt(&OneWireSlave::sendBitZero_, FALLING);
}
}
void OneWireSlave::sendBitOne_()
{
onEnterInterrupt_();
beginResetDetection_();
bitSentCallback_(false);
onLeaveInterrupt_();
}
void OneWireSlave::sendBitZero_()
{
pullLow_(); // this must be executed first because the timing is very tight with some master devices
onEnterInterrupt_();
pin_.detachInterrupt();
setTimerEvent_(SendBitDuration, &OneWireSlave::endSendBitZero_);
onLeaveInterrupt_();
}
void OneWireSlave::endSendBitZero_()
{
onEnterInterrupt_();
releaseBus_();
beginResetDetectionSendZero_();
bitSentCallback_(false);
onLeaveInterrupt_();
}
void OneWireSlave::beginWaitReset_()
{
disableTimer_();
pin_.inputMode();
pin_.attachInterrupt(&OneWireSlave::waitReset_, CHANGE);
resetStart_ = (unsigned int)-1;
}
void OneWireSlave::waitReset_()
{
onEnterInterrupt_();
bool state = pin_.read();
unsigned long now = micros();
if (state)
{
if (resetStart_ == (unsigned int)-1)
{
onLeaveInterrupt_();
return;
}
unsigned long resetDuration = now - resetStart_;
resetStart_ = (unsigned int)-1;
if (resetDuration >= ResetMinDuration)
{
if (resetDuration > ResetMaxDuration)
{
ERROR("Reset too long");
onLeaveInterrupt_();
return;
}
lastReset_ = now;
pin_.detachInterrupt();
unsigned long alreadyElapsedTime = micros() - now;
setTimerEvent_(alreadyElapsedTime < PresenceWaitDuration ? PresenceWaitDuration - alreadyElapsedTime : 0, &OneWireSlave::beginPresence_);
endWrite_(true, false);
if (clientReceiveCallback_ != 0)
clientReceiveCallback_(RE_Reset, 0);
}
}
else
{
resetStart_ = now;
}
onLeaveInterrupt_();
}
void OneWireSlave::beginPresence_()
{
pullLow_();
setTimerEvent_(PresenceDuration, &OneWireSlave::endPresence_);
}
void OneWireSlave::endPresence_()
{
releaseBus_();
beginWaitCommand_();
}
void OneWireSlave::beginWaitCommand_()
{
bufferPos_ = ReceiveCommand;
beginReceive_();
}
void OneWireSlave::beginReceive_()
{
receivingByte_ = 0;
bufferBitPos_ = 0;
beginReceiveBit_(&OneWireSlave::onBitReceived_);
}
void OneWireSlave::onBitReceived_(bool bit, bool error)
{
if (error)
{
ERROR("Invalid bit");
if (bufferPos_ >= 0)
receiveBytesCallback_(true);
return;
}
receivingByte_ |= ((bit ? 1 : 0) << bufferBitPos_);
++bufferBitPos_;
if (clientReceiveBitCallback_ != 0 && bufferPos_ != ReceiveCommand)
clientReceiveBitCallback_(bit);
if (bufferBitPos_ == 8)
{
// log("received byte", (long)receivingByte_);
if (bufferPos_ == ReceiveCommand)
{
bufferPos_ = 0;
switch (receivingByte_)
{
case 0xF0: // SEARCH ROM
resumeCommandFlag_ = false;
beginSearchRom_();
return;
case 0xEC: // CONDITIONAL SEARCH ROM
resumeCommandFlag_ = false;
if (alarmedFlag_)
{
beginSearchRom_();
}
else
{
beginWaitReset_();
}
return;
case 0x33: // READ ROM
resumeCommandFlag_ = false;
beginWriteBytes_(rom_, 8, &OneWireSlave::noOpCallback_);
return;
case 0x55: // MATCH ROM
resumeCommandFlag_ = false;
beginReceiveBytes_(scratchpad_, 8, &OneWireSlave::matchRomBytesReceived_);
return;
case 0xCC: // SKIP ROM
resumeCommandFlag_ = false;
beginReceiveBytes_(scratchpad_, 1, &OneWireSlave::notifyClientByteReceived_);
return;
case 0xA5: // RESUME
if (resumeCommandFlag_)
{
beginReceiveBytes_(scratchpad_, 1, &OneWireSlave::notifyClientByteReceived_);
}
else
{
beginWaitReset_();
}
return;
default:
ERROR("Unknown command");
return;
}
}
else
{
recvBuffer_[bufferPos_++] = receivingByte_;
receivingByte_ = 0;
bufferBitPos_ = 0;
if (bufferPos_ == bufferLength_)
{
beginWaitReset_();
receiveBytesCallback_(false);
return;
}
}
}
beginReceiveBit_(&OneWireSlave::onBitReceived_);
}
void OneWireSlave::beginSearchRom_()
{
searchRomBytePos_ = 0;
searchRomBitPos_ = 0;
searchRomInverse_ = false;
beginSearchRomSendBit_();
}
void OneWireSlave::beginSearchRomSendBit_()
{
byte currentByte = rom_[searchRomBytePos_];
bool currentBit = bitRead(currentByte, searchRomBitPos_);
bool bitToSend = searchRomInverse_ ? !currentBit : currentBit;
beginSendBit_(bitToSend, &OneWireSlave::continueSearchRom_);
}
void OneWireSlave::continueSearchRom_(bool error)
{
if (error)
{
ERROR("Failed to send bit");
return;
}
searchRomInverse_ = !searchRomInverse_;
if (searchRomInverse_)
{
beginSearchRomSendBit_();
}
else
{
beginReceiveBit_(&OneWireSlave::searchRomOnBitReceived_);
}
}
void OneWireSlave::searchRomOnBitReceived_(bool bit, bool error)
{
if (error)
{
ERROR("Bit read error during ROM search");
return;
}
byte currentByte = rom_[searchRomBytePos_];
bool currentBit = bitRead(currentByte, searchRomBitPos_);
if (bit == currentBit)
{
++searchRomBitPos_;
if (searchRomBitPos_ == 8)
{
searchRomBitPos_ = 0;
++searchRomBytePos_;
}
if (searchRomBytePos_ == 8)
{
// log("ROM sent entirely");
beginWaitReset_();
}
else
{
beginSearchRomSendBit_();
}
}
else
{
// log("Leaving ROM search");
beginWaitReset_();
}
}
void OneWireSlave::beginWriteBytes_(const byte* data, short numBytes, void(*complete)(bool error))
{
sendBuffer_ = data;
bufferLength_ = numBytes;
bufferPos_ = 0;
bufferBitPos_ = 0;
sendBytesCallback_ = complete;
if (sendBuffer_ != 0 && bufferLength_ > 0)
{
bool bit = bitRead(sendBuffer_[0], 0);
beginSendBit_(bit, &OneWireSlave::bitSent_);
}
else
{
endWrite_(true);
beginReceiveBytes_(scratchpad_, 1, &OneWireSlave::notifyClientByteReceived_);
}
}
void OneWireSlave::bitSent_(bool error)
{
if (error)
{
ERROR("error sending a bit");
sendBytesCallback_(true);
return;
}
++bufferBitPos_;
if (bufferBitPos_ == 8)
{
bufferBitPos_ = 0;
++bufferPos_;
}
if (bufferPos_ == bufferLength_)
{
endWrite_(false);
sendBytesCallback_(false);
return;
}
bool bit = bitRead(sendBuffer_[bufferPos_], bufferBitPos_);
beginSendBit_(bit, &OneWireSlave::bitSent_);
}
void OneWireSlave::beginReceiveBytes_(byte* buffer, short numBytes, void(*complete)(bool error))
{
recvBuffer_ = buffer;
bufferLength_ = numBytes;
bufferPos_ = 0;
receiveBytesCallback_ = complete;
beginReceive_();
}
void OneWireSlave::noOpCallback_(bool error)
{
if (error)
ERROR("error during an internal 1-wire operation");
}
void OneWireSlave::matchRomBytesReceived_(bool error)
{
if (error)
{
resumeCommandFlag_ = false;
ERROR("error receiving match rom bytes");
return;
}
if (memcmp(rom_, scratchpad_, 8) == 0)
{
// log("ROM matched");
resumeCommandFlag_ = true;
beginReceiveBytes_(scratchpad_, 1, &OneWireSlave::notifyClientByteReceived_);
}
else
{
// log("ROM not matched");
resumeCommandFlag_ = false;
beginWaitReset_();
}
}
void OneWireSlave::notifyClientByteReceived_(bool error)
{
if (error)
{
if (clientReceiveCallback_ != 0)
clientReceiveCallback_(RE_Error, 0);
ERROR("error receiving custom bytes");
return;
}
beginReceiveBytes_(scratchpad_, 1, &OneWireSlave::notifyClientByteReceived_);
if (clientReceiveCallback_ != 0)
clientReceiveCallback_(RE_Byte, scratchpad_[0]);
}

148
OneWireSlave.h

@ -0,0 +1,148 @@
#ifndef _OneWireSlave_h_
#define _OneWireSlave_h_
#include "Arduino.h"
#include "LowLevel.h"
class OneWireSlave
{
public:
enum ReceiveEvent
{
RE_Reset, //!< The master has sent a general reset
RE_Byte, //!< The master just sent a byte of data
RE_Error //!< A communication error happened (such as a timeout) ; the library will stop all 1-wire activities until the next reset
};
//! Starts listening for the 1-wire master, on the specified pin, as a virtual slave device identified by the specified ROM (7 bytes, starting from the family code, CRC will be computed internally). Reset, Presence, SearchRom and MatchRom are handled automatically. The library will use the external interrupt on the specified pin (note that this is usually not possible with all pins, depending on the board), as well as one hardware timer. Blocking interrupts (either by disabling them explicitely with sei/cli, or by spending time in another interrupt) can lead to malfunction of the library, due to tight timing for some 1-wire operations.
void begin(const byte* rom, byte pinNumber);
//! Stops all 1-wire activities, which frees hardware resources for other purposes.
void end();
//! Sets (or replaces) a function to be called when something is received. The callback is executed from interrupts and should be as short as possible. Failure to return quickly can prevent the library from correctly reading the next byte.
void setReceiveCallback(void(*callback)(ReceiveEvent evt, byte data)) { clientReceiveCallback_ = callback; }
//! Sets (or replaces) a function to be called when a bit is received. The byte reception callback is called after that if the received bit was the last of a byte. The callback is executed from interrupts and should be as short as possible. Failure to return quickly can prevent the library from correctly reading the next bit.
void setReceiveBitCallback(void(*callback)(bool bit)) { clientReceiveBitCallback_ = callback; }
//! Sets (or replaces) a function to be called when the library has a message to log, if the functionality is enabled in OneWireSlave.cpp. This is for debugging purposes.
void setLogCallback(void(*callback)(const char* message)) { logCallback_ = callback; }
//! Writes the specified bytes synchronously. This function blocks until the write operation has finished. Do not call from an interrupt handler! Returns true in case of success, false if an error occurs.
bool write(const byte* bytes, short numBytes);
//! Starts sending the specified bytes. They will be sent in the background, and the buffer must remain valid and unchanged until the write operation has finished or is cancelled. The optional callback is used to notify when the bytes are sent, or if an error occured. Callbacks are executed from interrupts and should be as short as possible. If bytes is null or numBytes is 0, nothing is sent, which is equivalent to calling stopWrite. In any case, calling the write function will cancel the previous write operation if it didn't complete yet.
void beginWrite(const byte* bytes, short numBytes, void(*complete)(bool error));
//! Writes a single bit synchronously. This function blocks until the bit is sent. Do not call from an interrupt handler! Returns true in case of success, false if an error occurs.
bool writeBit(bool value);
//! Sets a bit that will be sent next time the master asks for one. Optionnaly, the repeat parameter can be set to true to continue sending the same bit each time. In both cases, the send operation can be canceled by calling stopWrite.
void beginWriteBit(bool value, bool repeat = false, void(*bitSent)(bool error) = 0);
//! Cancels any pending write operation, started by writeBit or write. If this function is called before the master asked for a bit, then nothing is sent to the master.
void stopWrite();
//! Sets the alarmed state, that is used when the master makes a conditional search of alarmed devices.
void alarmed(bool value);
static byte crc8(const byte* data, short numBytes);
private:
static void setTimerEvent_(short delayMicroSeconds, void(*handler)());
static void disableTimer_();
static void onEnterInterrupt_();
static void onLeaveInterrupt_();
static void error_(const char* message);
static void pullLow_();
static void releaseBus_();
static void beginReceiveBit_(void(*completeCallback)(bool bit, bool error));
static void beginSendBit_(bool bit, void(*completeCallback)(bool error));
static void beginResetDetection_();
static void beginResetDetectionSendZero_();
static void cancelResetDetection_();
static void beginWaitReset_();
static void beginWaitCommand_();
static void beginReceive_();
static void onBitReceived_(bool bit, bool error);
static void beginSearchRom_();
static void beginSearchRomSendBit_();
static void continueSearchRom_(bool error);
static void searchRomOnBitReceived_(bool bit, bool error);
static void beginWriteBytes_(const byte* data, short numBytes, void(*complete)(bool error));
static void beginReceiveBytes_(byte* buffer, short numBytes, void(*complete)(bool error));
static void endWrite_(bool error, bool resetInterrupts = true);
static void onSynchronousWriteComplete_(bool error);
static void noOpCallback_(bool error);
static void matchRomBytesReceived_(bool error);
static void notifyClientByteReceived_(bool error);
static void bitSent_(bool error);
// interrupt handlers
static void waitReset_();
static void beginPresence_();
static void endPresence_();
static void receive_();
static void readBit_();
static void sendBitOne_();
static void sendBitZero_();
static void endSendBitZero_();
static void resetCheck_();
private:
static byte rom_[8];
static byte scratchpad_[8];
static Pin pin_;
static unsigned long resetStart_;
static unsigned long lastReset_;
static void(*receiveBitCallback_)(bool bit, bool error);
static void(*bitSentCallback_)(bool error);
static byte receivingByte_;
static byte searchRomBytePos_;
static byte searchRomBitPos_;
static bool searchRomInverse_;
static bool resumeCommandFlag_;
static bool alarmedFlag_;
static const byte* sendBuffer_;
static byte* recvBuffer_;
static short bufferLength_;
static short bufferPos_;
static byte bufferBitPos_;
static void(*receiveBytesCallback_)(bool error);
static void(*sendBytesCallback_)(bool error);
static volatile bool waitingSynchronousWriteToComplete_;
static volatile bool synchronousWriteError_;
static bool sendingClientBytes_;
static bool singleBit_;
static bool singleBitRepeat_;
static void (*singleBitSentCallback_)(bool error);
static void onSingleBitSent_(bool error);
static void(*clientReceiveCallback_)(ReceiveEvent evt, byte data);
static void(*clientReceiveBitCallback_)(bool bit);
static void(*logCallback_)(const char* message);
};
extern OneWireSlave OWSlave;
#endif

21
comptime.h

@ -0,0 +1,21 @@
// copied - source unknown
#define YY (((__DATE__[9]-'0')*16 + __DATE__[10])-'0')
#define MMM (\
__DATE__ [2] == '?' ? 1 \
: __DATE__ [2] == 'n' ? (__DATE__ [1] == 'a' ? 1 : 6) \
: __DATE__ [2] == 'b' ? 2 \
: __DATE__ [2] == 'r' ? (__DATE__ [0] == 'M' ? 3 : 4) \
: __DATE__ [2] == 'y' ? 5 \
: __DATE__ [2] == 'l' ? 7 \
: __DATE__ [2] == 'g' ? 8 \
: __DATE__ [2] == 'p' ? 9 \
: __DATE__ [2] == 't' ? 16 \
: __DATE__ [2] == 'v' ? 17 \
: 18)
#define DD ( __DATE__[4] == '?' ? 1 : ((__DATE__[4] == ' ' ? 0 : ((__DATE__[4] - '0') * 16)) + __DATE__[5] - '0'))
#define TT (((__TIME__[0] - '0') * 16) + __TIME__[1] - '0')
#define MM (((__TIME__[3] - '0') * 16) + __TIME__[4] - '0')
#define SS (((__TIME__[6] - '0') * 16) + __TIME__[7] - '0')
#define SERIAL_NUMBER YY, MMM, DD, TT, MM, SS
Loading…
Cancel
Save